If ÃÂÃÂ and ÃÂÃÂ then the value of x4 - 2x2y2 + y4 = ?
(A) 24
(B) 4
(C) 16
(D) 8
Solution:
$$\eqalign{ & x = p + \frac{1}{p}{\text{ }} \cr & y = p - \frac{1}{p} \cr & \therefore x + y = p + \frac{1}{p} + p - \frac{1}{p} \cr & \Leftrightarrow x + y = 2p \cr & \therefore x - y = p + \frac{1}{p} - p + \frac{1}{p} \cr & \Leftrightarrow x - y = \frac{2}{p} \cr & \therefore {x^4} - 2{x^2}{y^2} + {y^4} \cr & = {x^4} + {y^4} - 2{x^2}{y^2} \cr & = {\left( {{x^2} - {y^2}} \right)^2} \cr & = {\left[ {\left( {x + y} \right)\left( {x - y} \right)} \right]^2} \cr & = {\left( {2p \times \frac{2}{p}} \right)^2} \cr & = {\left( 4 \right)^2} \cr & = 16 \cr} $$
64.
If x = 2, y = 1 and z = -3, then x3 + y3 + z3 - 3xyz is equal to?
(A) 6
(B) 0
(C) 2
(D) 8
Solution:
$$\eqalign{ & {\text{According to the question,}} \cr & x = 2,{\text{ }}y = 1,{\text{ }}z = - 3 \cr & {x^3} + {y^3} + {z^3} - 3xyz = ? \cr & {\text{As we know that}} \cr & a + b + c = 0{\text{ then }}{a^3} + {b^3} + {c^3} - 3abc = 0 \cr & 2 + 1 - 3 = 0 \cr & \therefore {x^3} + {y^3} + {z^3} - 3xyz = 0 \cr} $$
65.
If ÃÂÃÂ then the value of x is?
(A) 3
(B) -3
(C)
(D)
Solution:
$$\eqalign{ & {{\text{7}}^x}{\text{ = }}\frac{1}{{343}} \cr & \Rightarrow {{\text{7}}^x}{\text{ = }}\frac{1}{{{7^3}}} \cr & \Rightarrow {{\text{7}}^x}{\text{ = }}{{\text{7}}^{ - 3}} \cr & \Rightarrow x = - 3 \cr} $$ (If bases are equal then their power are also equal)
66.
If (135ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂ5x - 2ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂ2y) ÃÂÃÂÃÂÃÂÃÂÃÂÃÂ÷ (3ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂ5x - ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂ2y) = Ax + By + Cxy, then the value of (A + B - 9C) is:2322