Practice MCQ Questions and Answer on Speed Time and Distance

431.

A runs twice as fast as B and B runs thrice as fast as C. The distance covered by C in 72 minutes, will be covered by A in:

  • (A) 18 minutes
  • (B) 24 minutes
  • (C) 16 minutes
  • (D) 12 minutes

432.

A car travelling with $$\frac{5}{7}$$ of its actual speed covers 42 km in 1 hour 40 minute 48 second. Find the actual speed of the car.

  • (A) $$17\frac{6}{7}\,$$ km/hr
  • (B) 25 km/hr
  • (C) 30 km/hr
  • (D) 35 km/hr

433.

Two trains 180 metres and 120 metres in length are running towards each other on parallel tracks, one at the rate 65 km/hr and another at 55 km/hr. In how many seconds will they be cross each other from the moment they meet ?

  • (A) 6 seconds
  • (B) 9 seconds
  • (C) 12 seconds
  • (D) 15 seconds

434.

A train, 110 m long is running at a speed of 60 km/hr. How many seconds does it to cross another train, 170 m long standing on parallel track ?

  • (A) 15.6 seconds
  • (B) 16.8 seconds
  • (C) 17.2 seconds
  • (D) 18 seconds

435.

A man travels for 5 hours 15 minutes. If he covers the first half of the journey at 60 km/h and rest at 45 km/h. Find the total distance travelled by him.

  • (A) 189 km
  • (B) 378 km
  • (C) 270 km
  • (D) $$1028\frac{6}{7}$$  km

436.

A long distance runner run 9 laps of a 400 metres track everyday. His timings (in min) for four consecutive days are 88, 96, 89 and 87 respectively. On an average, how many metres/minutes does the runner cover ?

  • (A) 17.78 m/min
  • (B) 40 m/min
  • (C) 90 m/min
  • (D) None of these

437.

A and B start from the same point and in the same direction at 7 am to walk around a rectangular field 400 m × 300 m. A and B walk at the rate of 3 km/hr and 2.5 km/hr respectively. How many times shall they cross each other if they continue to walk till 12.30 pm ?

  • (A) Not even once
  • (B) Once
  • (C) Twice
  • (D) Thrice

438.

A train 100 m long is running at the speed of 30 km/hr. The time (in second) in which it passes a man standing near the railway line is :

  • (A) 10 seconds
  • (B) 11 seconds
  • (C) 12 seconds
  • (D) 15 seconds

439.

A runs $$\frac{7}{4}$$ times as fast as B. If A gives B a start of 300 m, how far must the winning post be if both A and B have to end the race at same time?

  • (A) 1400 m
  • (B) 700 m
  • (C) 350 m
  • (D) 210 m

440.

I started on my bicycle at 7 am to reach a certain place. After going a certain distance, my bicycle went out of order. Consequently, I rested for 35 minutes and came back to my house walking all the way. I reached my house at 1 pm. If my cycling speed is 10 kmph and my walking speed is 1 kmph, then on my bicycle I covered a distance of :

  • (A) $$4\frac{61}{66}$$ km
  • (B) $$13\frac{4}{9}$$ km
  • (C) $$14\frac{3}{8}$$ km
  • (D) $$15\frac{10}{21}$$ km