21.
If ÃÂÃÂ = 5.745, then the value of the following is approximately:
- (A) 0.5223
- (B) 6.32
- (C) 2.035
- (D) 1
Solution:
Answer & Solution Answer: Option A No explanation is given for this question Let's Discuss on Board
22.
If a = bp, b = cq, c = ar then pqr is
- (A) 1
- (B) 0
- (C) -1
- (D) abc
Solution:
a = bp and b = cq ∴ c = ar = (bp)r = (b)pr = (cq)pr = cpqr ⇒ pqr = 1
23.
If a = bp, b = cq, c = ar then pqr is
- (A) 1
- (B) 0
- (C) -1
- (D) abc
Solution:
a = bp and b = cq ∴ c = ar = (bp)r = (b)pr = (cq)pr = cpqr ⇒ pqr = 1
24.
ÃÂÃÂ ÃÂÃÂ
- (A) xabc
- (B) 1
- (C) xab+bc+ca
- (D) xa+b+c
Solution:
$${x^{\left( {b - c} \right)\left( {b + c - a} \right)}}.{x^{\left( {c - a} \right)\left( {c + a - b} \right)}}.{x^{\left( {a - b} \right)\left( {a + b - c} \right)}}$$ $$ = {x^{\left( {b - c} \right)\left( {b + c} \right) - a\left( {b - c} \right)}}.$$ $${x^{\left( {c - a} \right)\left( {c + a} \right) - b\left( {c - a} \right)}}.$$ $${x^{\left( {a - b} \right)\left( {a + b} \right) - c\left( {a - b} \right)}}$$ $$\eqalign{ & = {x^{\left( {{b^2} - {c^2} + {c^2} - {a^2} + {a^2} - {b^2}} \right)}}.{x^{ - a\left( {b - c} \right) - b\left( {c - a} \right) - c\left( {a - b} \right)}} \cr & = \left( {{x^0} \times {x^0}} \right) \cr & = \left( {1 \times 1} \right) \cr & = 1 \cr} $$
25.
(25) ÃÂÃÂÃÂÃÂÃÂà(5) ÃÂÃÂÃÂÃÂÃÂÃÂÃÂ÷ (125) = 57.52.51.5?
- (A) 8.5
- (B) 13
- (C) 16
- (D) 17.5
Solution:
$$\eqalign{ & {\text{Let}}\,{\left( {25} \right)^{7.5}} \times {\left( 5 \right)^{2.5}} \div {\left( {125} \right)^{1.5}} = {5^x} \cr & {\text{Then}},\,\frac{{{{\left( {{5^2}} \right)}^{7.5}} \times {{\left( 5 \right)}^{2.5}}}}{{{{\left( {{5^3}} \right)}^{1.5}}}} = {5^x} \cr & \Rightarrow \frac{{{5^{\left( {2 \times 7.5} \right)}} \times {5^{2.5}}}}{{{5^{\left( {3 \times 1.5} \right)}}}} = {5^x} \cr & \Rightarrow \frac{{{5^{15}} \times {5^{2.5}}}}{{{5^{4.5}}}} = {5^x} \cr & \Rightarrow {5^x} = {5^{\left( {15 + 2.5 - 4.5} \right)}} \cr & \Rightarrow {5^x} = {5^{13}} \cr & \therefore x = 13 \cr} $$
26.
What are the values of x and y that satisfy the equation,
- (A) x = 2.5, y = 6
- (B) x = 3, y = 5
- (C) x = 3, y = 4
- (D) x = 5, y = 2
Solution:
$$\eqalign{ & {{\text{2}}^{0.7x}}{\text{.}}{{\text{3}}^{ - 1.25y}}{\text{ = }}\frac{{8\sqrt 6 }}{{27}} \cr & \Leftrightarrow \frac{{{{\text{2}}^{0.7x}}}}{{{{\text{3}}^{ 1.25y}}}}{\text{ = }}\frac{{{2^3}{{.2}^{\frac{1}{2}}}{{.3}^{\frac{1}{2}}}}}{{{3^3}}} \cr & \Leftrightarrow \frac{{{2^{\left( {3 + \frac{1}{2}} \right)}}}}{{{3^{\left( {3 - \frac{1}{2}} \right)}}}} = \frac{{{2^{\frac{7}{2}}}}}{{{2^{\frac{5}{2}}}}} = \frac{{{2^{3.5}}}}{{{3^{2.5}}}} \cr & \therefore 0.7x = 3.5 \Rightarrow x = \frac{{3.5}}{{0.7}}{\text{ = 5}} \cr & {\text{and }}1.25y = 2.5 \cr & \Rightarrow y = \frac{{2.5}}{{1.25}} = 2 \cr} $$
27.
The value of ÃÂÃÂ ÃÂÃÂ is = ?
Solution:
$$\eqalign{ & \frac{1}{{1 + \sqrt 2 + \sqrt 3 }} + \frac{1}{{1 - \sqrt 2 + \sqrt 3 }} \cr & = \frac{1}{{1 + \sqrt 3 + \sqrt 2 }} + \frac{1}{{1 + \sqrt 3 - \sqrt 2 }} \cr & = \frac{{1 + \sqrt 3 - \sqrt 2 + 1 + \sqrt 3 + \sqrt 2 }}{{{{\left( {1 + \sqrt 3 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}}} \cr & = \frac{{2 + 2\sqrt 3 }}{{4 + 2\sqrt 3 - 2}} \cr & = \frac{{2 + 2\sqrt 3 }}{{2 + 2\sqrt 3 }} \cr & = 1 \cr} $$
28.
Given = 1.414, the value of ÃÂÃÂ is = ?
- (A) 8.484
- (B) 8.526
- (C) 8.426
- (D) 8.876
Solution:
$$\eqalign{ & \sqrt 2 = 1.414 \cr & \Rightarrow \sqrt 8 {\text{ + 2}}\sqrt {32} - 3\sqrt {128} {\text{ + 4}}\sqrt {50} \cr & \Rightarrow 2\sqrt 2 + 2 \times 4\sqrt 2 - 3 \times 8\sqrt 2 + 4 \times 5\sqrt 2 \cr & \Rightarrow 2\sqrt 2 + 8\sqrt 2 - 24\sqrt 2 + 20\sqrt 2 \cr & \Rightarrow 6\sqrt 2 \cr & \Rightarrow 6 \times 1.414 \cr & \Rightarrow 8.484{\text{ }} \cr} $$
29.
The least one among ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ is = ?
Solution:
$$2\sqrt 3 = {\left( {4 \times 3} \right)^{\frac{1}{2}}} \to {12^{\frac{1}{2}}} \to {12^{\frac{2}{4}}} \to \root 4 \of {144} $$ $$2\root 4 \of 5 = \root 4 \of {\left( {5 \times 16} \right)} \to {80^{\frac{1}{4}}} \to \root 4 \of {80} $$ $$\sqrt 8 = {8^{\frac{1}{2}}} \to {8^{\frac{1}{2}}} \to \boxed{\root 4 \of {64} }\,{\text{smallest}}$$ $$3\sqrt 2 = \sqrt {18} \to {18^{\frac{1}{2}}} \to {18^{\frac{2}{4}}} \to \root 4 \of {324} $$ $$\sqrt 8 \,{\text{ is answer}}$$
30.
What is the value of
- (A) 12345
- (B) 123456
- (C) 12344
- (D) 123454
Solution:
$$\eqalign{ & \sqrt {121} + \sqrt {12321} + \sqrt {1234321} + \sqrt {123454321} \cr & = 11 + 111 + 1111 + 11111 \cr & = 12344 \cr} $$