131.
If ÃÂÃÂ ÃÂÃÂ then the value of
Solution:
$$\eqalign{ & a + \frac{1}{a} + 1 = 0 \cr & a + \frac{1}{a} = - 1 \cr & {\text{Squaring both sides}} \cr & \Rightarrow {a^2} + \frac{1}{{{a^2}}} + 2 = 1 \cr & \Rightarrow {a^2} + \frac{1}{{{a^2}}} = - 1 \cr & \Rightarrow {a^2} + 1 = - \frac{1}{{{a^2}}}\,.....(i) \cr & \Rightarrow a + \frac{1}{a} = - 1{\text{ }}\left( {{\text{Given}}} \right) \cr & \therefore {a^2} + 1 = - a\,.....(ii) \cr & \Rightarrow - a = \frac{{ - 1}}{{{a^2}}} \cr & {\text{For equation (i) and (ii)}} \cr & {{\text{a}}^3} = 1 \cr & \therefore {{\text{a}}^3} - 1 = 0 \cr & \Rightarrow {a^4} - a = a\left( {{a^3} - 1} \right) \cr & \Rightarrow {a^4} - a = a \times 0 \cr & \Rightarrow {a^4} - a = 0 \cr} $$
132.
If ÃÂÃÂ ÃÂÃÂ then the value of ÃÂÃÂ is equal to?
Solution:
$$\eqalign{ & {p^2} + {q^2} = 7pq \cr & \frac{p}{q}{\text{ + }}\frac{q}{p} = 7 \cr} $$ (Divide whole equation by pq)
133.
If x2 - 3x + 1 = 0, then the value of ÃÂÃÂ ÃÂÃÂ will be?
- (A) 18
- (B) 15
- (C) 21
- (D) 30
Solution:
$$\eqalign{ & {x^2} - 3x + 1 = 0 \cr & \Rightarrow {x^2} + 1 = 3x \cr & \Rightarrow x + \frac{1}{x} = 3 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} + 3 \times 3 = 27 \cr & \Rightarrow {x^3} + \frac{1}{{{x^3}}} = 18 \cr & \therefore \frac{{{x^6} + {x^4} + {x^2} + 1}}{{{x^3}}}{\text{ }} \cr & = \frac{{{x^6}}}{{{x^3}}} + \frac{{{x^4}}}{{{x^3}}} + \frac{{{x^2}}}{{{x^3}}} + \frac{1}{{{x^3}}} \cr & = {x^3} + \frac{1}{{{x^3}}} + \frac{1}{x} + x \cr & = 18 + 3 \cr & = 21 \cr} $$
134.
If ÃÂÃÂ then the value of x2 - 4 is equal to:
Solution:
$$\eqalign{ & x + \frac{4}{x} = 4 \cr & x = 2 \cr & {\text{So, }}{x^2} - 4 = ? \cr & {x^2} - 4 = 4 - 4 = 0 \cr} $$
135.
a + b + c = 0, then the value of ÃÂÃÂ is?
Solution:
$$\eqalign{ & {\text{If }}a + b + c = 0 \cr & {\text{Put }}a = 1,{\text{ }}b = 1{\text{ and }}c = - 2 \cr & \therefore \frac{{{a^2} + {b^2} + {c^2}}}{{ab + bc + ca}} \cr & = \frac{{1 + 1 + 4}}{{1 - 2 - 2}} \cr & = \frac{6}{{ - 3}} \cr & = - 2 \cr} $$
136.
If x4 - 83x2 + 1 = 0, then a value of x3 - x-3 can be:
- (A) 758
- (B) 756
- (C) 739
- (D) 737
Solution:
$$\eqalign{ & {x^4} - 83{x^2} + 1 = 0 \cr & {x^2} - 83 + \frac{1}{{{x^2}}} = 0 \cr & {x^2} + \frac{1}{{{x^2}}} = 83 \cr & {x^2} + \frac{1}{{{x^2}}} - 2 = 83 - 2 \cr & {\left( {x - \frac{1}{x}} \right)^2} = 81 \cr & x - \frac{1}{x} = 9 \cr & {\left( {x - \frac{1}{x}} \right)^3} = {9^3} \cr & {x^3} - \frac{1}{{{x^3}}} - 3 \times 9 = 729 \cr & {x^3} - \frac{1}{{{x^3}}} = 756 \cr} $$
137.
If x * y = (x + 3)2 (y - 1), then the value of 5 * 4 is?
- (A) 192
- (B) 182
- (C) 180
- (D) 172
Solution:
$$\eqalign{ & x*y = {\left( {x + 3} \right)^2}\left( {y - 1} \right) \cr & \Leftrightarrow 5*4 = {\left( {5 + 3} \right)^2}\left( {4 - 1} \right) \cr & \Leftrightarrow 5*4 = 64 \times 3 \cr & \Leftrightarrow 5*4 = 192 \cr} $$
138.
If x - ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂ7x + 1 = 0, then what is the value of 2
- (A) 19√7
- (B) 25√7
- (C) 27√7
- (D) 21√7
Solution:
$$\eqalign{ & {x^2} - \sqrt 7 x + 1 = 0 \cr & {x^2} + 1 = \sqrt 7 x \cr & x + \frac{1}{x} = \sqrt 7 \cr & {x^5} + \frac{1}{{{x^5}}} = \left( {{x^2} + \frac{1}{{{x^2}}}} \right)\left( {{x^3} + \frac{1}{{{x^3}}}} \right) - \left( {x + \frac{1}{x}} \right) \cr & = \left( {{{\left( {\sqrt 7 } \right)}^2} - 2} \right)\left( {{{\left( {\sqrt 7 } \right)}^3} - 3 \times \sqrt 7 } \right) - \sqrt 7 \cr & = 5 \times 4\sqrt 7 - \sqrt 7 \cr & = 19\sqrt 7 \cr} $$
139.
If ÃÂÃÂ then the value of ÃÂÃÂ is?
Solution:
$$\eqalign{ & x + \frac{1}{x} = 3 \cr & \frac{{3{x^2} - 4x + 3}}{{{x^2} - x + 1}} \cr & = \frac{{\frac{{3{x^2}}}{x} - \frac{{4x}}{x} + \frac{3}{x}}}{{\frac{{{x^2}}}{x} - \frac{x}{x} + \frac{1}{x}}} \cr & = \frac{{3\left( {x + \frac{1}{x}} \right) - 4}}{{\left( {x + \frac{1}{x}} \right) - 1}} \cr & = \frac{{3 \times 3 - 4}}{{3 - 1}} \cr & = \frac{{9 - 4}}{2} \cr & = \frac{5}{2} \cr} $$
140.
Simplify
Solution:
$$\eqalign{ & {\text{Given:}} \cr & x + \frac{{{y^2}}}{x} = 5 \cr & {\text{Put }}y = 2,\,x = 1 \cr & {\text{Now,}} \cr & \frac{{{x^2} + 2x + {y^2}}}{{{x^3} - 5{x^2}}} \cr & = \frac{{{{\left( 1 \right)}^2} + 2 \times 1 + {{\left( 2 \right)}^2}}}{{{{\left( 1 \right)}^3} - 5{{\left( 1 \right)}^2}}} \cr & = \frac{7}{{ - 4}} \cr & {\text{Put }}y = 2{\text{ in option and option D will satisfy the condition}} \cr & \cr & {\bf{Alternate \,solution:}} \cr & x + \frac{{{y^2}}}{x} = 5 \cr & {x^2} + {y^2} = 5x \cr & {x^2} - 5x = - {y^2} \cr & {\text{Now, }}\frac{{{x^2} + 2x + {y^2}}}{{{x^3} - 5{x^2}}} \cr & = \frac{{5x + 2x}}{{x\left( {{x^2} - 5x} \right)}} \cr & = \frac{{7x}}{{x\left( { - {y^2}} \right)}} \cr & = - \frac{7}{{{y^2}}} \cr} $$