Practice MCQ Questions and Answer on Simplification

191.

What will come at place of x, (x 10) for $$\frac{{\left( {132 \div 12 \times x - 3 \times 3} \right)}}{{\left( {{5^2} - 6 \times 4 + {x^2}} \right)}} = 1?$$

  • (A) 2
  • (B) 4
  • (C) 3
  • (D) 1

192.

$$\frac{1}{{10}}$$ of a pole is coloured red, $$\frac{1}{{20}}$$ white, $$\frac{1}{{30}}$$ blue, $$\frac{1}{{40}}$$ black, $$\frac{1}{{50}}$$ violet, $$\frac{1}{{60}}$$ yellow and the rest is green. If the length of the green portion of the pole is 12.08 metres, then the length of the pole is = ?

  • (A) 16m
  • (B) 18m
  • (C) 20m
  • (D) 30m

193.

The value of $$0.4\overline 6 + 0.7\overline {23} - 0.3\overline 9 \times 0.\overline 7 $$     is:

  • (A) $$0.\overline {57} $$
  • (B) $$0.\overline {87} $$
  • (C) $$0.\overline {97} $$
  • (D) $$0.\overline {77} $$

194.

The value of 3 ÷ 18 of 3 × 6 + 21 × 6 ÷ 18 - 3 ÷ 2 + 3 - 3 ÷ 9 of 3 × 9 is:

  • (A) $$\frac{{29}}{6}$$
  • (B) $$\frac{{41}}{6}$$
  • (C) $$\frac{{35}}{9}$$
  • (D) $$\frac{{47}}{6}$$

195.

If $$\sqrt {{\text{4096}}} $$  = 64, then the value of $$\sqrt {{\text{40}}{\text{.96}}} $$   $$ + $$ $$\sqrt {{\text{0}}{\text{.4096}}} $$   $$ + $$ $$\sqrt {{\text{0}}{\text{.004096}}} $$    $$ + $$ $$\sqrt {{\text{0}}{\text{.00004096}}} $$     up to two place of decimals is = ?

  • (A) 7.09
  • (B) 7.10
  • (C) 7.11
  • (D) 7.12

196.

If $$\frac{1}{{4.263}} = 0.2346,$$   find the value of $$\frac{1}{{0.0004263}}.$$

  • (A) 2346
  • (B) 4.263
  • (C) 2.346
  • (D) 4263

197.

Find the value of 2.1 + 2.25 ÷ [63 - {7.5 × 8 + (13 - 2.5 × 5)}].

  • (A) 2.8
  • (B) 2.9
  • (C) 3.0
  • (D) 3.1

198.

The simplified value of $$\sqrt {5 + \sqrt {11 + \sqrt {19 + \sqrt {29 + \sqrt {49} } } } } $$      = ?

  • (A) 3
  • (B) 2
  • (C) 4
  • (D) 6

199.

Given that $$\sqrt {574.6} $$  = 23.97, $$\sqrt {5746} $$  = 75.8 then $$\sqrt {0.00005746} $$   = ?

  • (A) 0.002394
  • (B) 0.0002397
  • (C) 0.0007580
  • (D) 0.00758

200.

Let 0 x 1, then the correct inequality is = ?

  • (A) $$x \sqrt x {x^2}$$  
  • (B) $$\sqrt x x {x^2}$$  
  • (C) $${x^2} x \sqrt x $$  
  • (D) $$\sqrt x {x^2} x$$