Practice MCQ Questions and Answer on Simplification

271.

Simplify : -7m -[3n -{8m -(4n - 10m)}]

  • (A) 11m - 5n
  • (B) 11m - 7n
  • (C) 11n - 7m
  • (D) 13n - 11m

272.

$$\left[ {2\sqrt {54} - 6\sqrt {\frac{2}{3}} - \sqrt {96} } \right]$$     is equal to = ?

  • (A) 0
  • (B) 1
  • (C) 2
  • (D) $$\sqrt 6 $$

273.

Find the value of $$a$$ in the following equation. (Given: $$a$$ 10.)
$$\frac{{\left( {187 \div 17 \times a - 3 \times 3} \right)}}{{\left( {{8^2} - 9 \times 7 + {a^2}} \right)}} = 1$$

  • (A) 2
  • (B) 1
  • (C) 4
  • (D) 3

274.

The simplest value of $$\left( {\frac{1}{{\sqrt 9 - \sqrt 8 }} - \frac{1}{{\sqrt 8 - \sqrt 7 }} + \frac{1}{{\sqrt 7 - \sqrt 6 }} - \frac{1}{{\sqrt 6 - \sqrt 5 }}} \right)$$          is = ?

  • (A) $$3 - \sqrt 5 $$
  • (B) 3
  • (C) $$\sqrt 5 $$
  • (D) $$\sqrt 5 - 3$$

275.

$$\frac{{{{\left( {7.5} \right)}^3} + 1}}{{{{\left( {7.5} \right)}^2} - 6.5}}$$    is equal to = ?

  • (A) 2.75
  • (B) $$\frac{9}{5}$$
  • (C) 4.75
  • (D) 8.5

276.

If the expression $${\text{2}}\frac{1}{2}{\text{ of }}\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{2}{\text{ of }}\frac{2}{3}} \right]$$        is simplified, we get -

  • (A) $$\frac{1}{2}$$
  • (B) $$\frac{7}{8}$$
  • (C) $${\text{1}}\frac{5}{8}$$
  • (D) $${\text{2}}\frac{3}{5}$$

277.

The value of $$\sqrt {32} $$  - $$\sqrt {128} $$  + $$\sqrt {50} $$ correct to 3 places of decimal is $$\sqrt {32} $$  - $$\sqrt {128} $$  + $$\sqrt {50} $$  = ?

  • (A) 1.732
  • (B) 1.141
  • (C) 1.414
  • (D) 1.441

278.

$$\left( {999\frac{{999}}{{1000}} \times 7} \right)$$   is equal to = ?

  • (A) $${\text{6633}}\frac{7}{{1000}}$$
  • (B) $${\text{6993}}\frac{7}{{1000}}$$
  • (C) $${\text{6999}}\frac{993}{{1000}}$$
  • (D) $$7000\frac{7}{{1000}}$$

279.

Simplify : $$\sqrt {3 + \frac{{33}}{{64}}} \div $$   $$\sqrt {9 + \frac{1}{7}} \times $$   $$2\sqrt {3\frac{1}{9}} $$   = ?

  • (A) $$\frac{{45}}{{256}}$$
  • (B) $$1\frac{{17}}{{28}}$$
  • (C) $$4\frac{3}{8}$$
  • (D) $$2\frac{3}{{16}}$$