41.
If 3.352 - (9.759 - x) - 19.64 = 7.052, then what is the value of x?
(A) -6.181
(B) 13.581
(C) 33.099
(D) 39.803
Show Answer
Solution:
3.352 - (9.759 - x) - 19.64 = 7.052 ⇒ 3.352 - 9.759 + x - 19.64 - 7.052 = 0 ⇒ x = 36.451 - 3352 ∴ x = 33.099
42.
What is the value of ÃÂÃÂ in vulgar fraction?
Show Answer
Solution:
$$\eqalign{ & 0.51\overline {345} \cr & = \frac{{51345 - 51}}{{99900}} \cr & = \frac{{51294}}{{99900}} \cr} $$
43.
Show Answer
Solution:
$$\eqalign{ & {\text{Given expression}} \cr & \frac{{24}}{5} \div \frac{{32}}{5} \cr & = \frac{{24}}{5} \times \frac{5}{{32}} \cr & = \frac{3}{4} \cr} $$
44.
David gets on the elevator at the 11th floor of a building and rides up at the rate of 57 floors per minute. At the same time, Albert gets on an elevator at the 51st floor of the same building and rides down at the rate of 63 floors per minute. If they continue travelling at these rates, then at which floor will their paths cross ?
(A) 19th floor
(B) 28th floor
(C) 30th floor
(D) 37th floor
Show Answer
Solution:
Suppose their paths cross after x minutes Then, 11 + 57x = 51 - 63x ⇒ 57x + 63x = 51 - 11 ⇒ 120x = 40 ⇒ x = $$\frac{1}{3}$$ Number of floors covered by David in $$\frac{1}{3}$$ min. $$\eqalign{ & = {\frac{1}{3} \times 57} \cr & = 19 \cr} $$ So, their paths cross at (11 + 19) i.e., 30th floor
45.
If a = -12, b = -6 and c = 18, then what is the value of
(A) 554
(B) 288
(C) 272
(D) 144
Show Answer
Solution:
$$\eqalign{ & \frac{{2{\text{abc}}}}{9} \cr & = \frac{{2 \times - 12 \times - 6 \times 18}}{9} \cr & = 288 \cr} $$
46.
ÃÂÃÂ ÃÂÃÂ is equal to ?
Show Answer
Solution:
$$\eqalign{ & {\text{According to question,}} \cr & \sqrt {\frac{{0.25}}{{0.0009}}} \times \sqrt {\frac{{0.09}}{{0.36}}\,\,} \cr & \Rightarrow \sqrt {\frac{{25}}{9} \times 100} \times \sqrt {\frac{9}{{36}}\,\,} \cr & \Rightarrow \frac{{5 \times 10}}{3} \times \frac{3}{6} \cr & \Rightarrow \frac{{25}}{3} \cr & \Rightarrow 8\frac{1}{3} \cr} $$
47.
If ÃÂÃÂ and ÃÂÃÂ then ÃÂÃÂ is equal to = ?
Show Answer
Solution:
$$\eqalign{ & a + \frac{1}{b} = 1{\text{ }} \cr & \Rightarrow ab + 1 = b \cr & \Rightarrow ab - b = - 1 \cr & \Rightarrow b\left( {a - 1} \right) = - 1 \cr & \Rightarrow b = \frac{1}{{\left( {1 - a} \right)}} \cr & \cr & b + \frac{1}{c} = 1 \cr & \Rightarrow bc + 1 = c \cr & \Rightarrow bc - c = - 1 \cr & \Rightarrow c\left( {b - 1} \right) = - 1 \cr & \Rightarrow c = \frac{1}{{\left( {1 - b} \right)}} \cr & \cr & \therefore c + \frac{1}{a} = \frac{1}{{\left( {1 - b} \right)}} + \frac{1}{a} \cr & c + \frac{1}{a} = \frac{1}{{1 - \left( {\frac{1}{{1 - a}}} \right)}} + \frac{1}{a} \cr & c + \frac{1}{a} = \frac{1}{{\frac{{\left( {1 - a} \right) - 1}}{{\left( {1 - a} \right)}}}} + \frac{1}{a} \cr & c + \frac{1}{a} = \frac{{\left( {1 - a} \right)}}{{ - a}} + \frac{1}{a} \cr & c + \frac{1}{a} = \frac{{\left( {a - 1} \right)}}{a} + \frac{1}{a} \cr & c + \frac{1}{a} = \frac{{a - 1 + 1}}{a} \cr & c + \frac{1}{a} = \frac{a}{a} \cr & c + \frac{1}{a} = 1 \cr} $$
48.
If the sum of two numbers is 22 and the sum of their squares is 404, then the product of two numbers is = ?
(A) 40
(B) 44
(C) 80
(D) 88
Show Answer
Solution:
$$\eqalign{ & {\text{According to the question}} \cr & x + y = 22\,......(i) \cr & {x^2} + {y^2} = 404\,......(ii){\text{ }} \cr & \therefore {\left( {x + y} \right)^2} = {x^2} + {y^2} + 2xy \cr & \Rightarrow {\left( {22} \right)^2} = 404 + 2xy \cr & \Rightarrow 484 = 404 + 2xy \cr & \Rightarrow 2xy = 80 \cr & \Rightarrow xy = 40 \cr} $$
49.
If x + y + z = 0, then x3 + y3 + z3 + 3xyz is equal to = ?
(A) 0
(B) 6xyz
(C) 12xyz
(D) xyz
Show Answer
Solution:
As we know a3 + b3 + c3 + 3abc = (a2 + b2 + c2 - ab - bc - ca)(a + b + c) When, a + b + c = 0 Then a3 + b3 + c3 - 3abc = 0 When, x + y + z = 0 ⇒ x3 + y3 + z3 = 3xyz ⇒ x3 + y3 + z3 + 3xyz = 3xyz + 3xyz ⇒ x3 + y3 + z3 + 3xyz = 6xyz
50.
The simplified value of ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ = ?
Show Answer
Solution:
$$\eqalign{ & {\text{According to question,}} \cr & \,\,\,\, \sqrt {5 + \sqrt {11 + \sqrt {19 + \sqrt {29 + \sqrt {49} } } } } \cr & \Rightarrow \sqrt {5 + \sqrt {11 + \sqrt {19 + \sqrt {29 + 7} } } } \cr & \Rightarrow \sqrt {5 + \sqrt {11 + \sqrt {19 + \sqrt {36} } } } \cr & \Rightarrow \sqrt {5 + \sqrt {11 + \sqrt {19 + 6} } } \cr & \Rightarrow \sqrt {5 + \sqrt {11 + \sqrt {25} } } \cr & \Rightarrow \sqrt {5 + \sqrt {11 + 5} } \cr & \Rightarrow \sqrt {5 + \sqrt {16} } \cr & \Rightarrow \sqrt {5 + 4} \cr & \Rightarrow \sqrt 9 \cr & \Rightarrow 3 \cr} $$