341.
If ÃÂÃÂÃÂø is a acute angle and sin(ÃÂÃÂÃÂø + 18ÃÂÃÂÃÂð) = then the value of ÃÂÃÂÃÂø in circular measure is?
(A) Radians
(B) Radians
(C) Radians
(D) Radians
Show Answer
Solution:
$$\eqalign{ & {\text{sin}}\left( {\theta + {{18}^ \circ }} \right){\text{ = }}\frac{1}{2} \cr & {\text{sin}}\left( {\theta + {{18}^ \circ }} \right) = {\text{sin }}{30^ \circ } \cr & \theta + {18^ \circ } = {30^ \circ } \cr & \therefore \theta = {12^ \circ } \cr & {\text{We know that,}} \cr & {180^ \circ } = \pi \cr & {12^ \circ } = \frac{\pi }{{{{180}^ \circ }}} \times 12 = \frac{\pi }{{15}} \cr} $$
342.
If ÃÂÃÂÃÂñ + ÃÂÃÂÃÂò = 90ÃÂÃÂÃÂð and ÃÂÃÂÃÂñ : ÃÂÃÂÃÂò = 2 : 1, then the ratio of cosÃÂÃÂÃÂñ to cosÃÂÃÂÃÂò is?
(A) 1 :
(B) 1 : 3
(C) 1 :
(D) 1 : 2
Show Answer
Solution:
$$\eqalign{ & \alpha + \beta = {90^ \circ } \cr & {\text{and }}\alpha :\beta = 2:1 \cr & 2x + x = {90^ \circ } \cr & x = {30^ \circ } \cr & {\text{ }}\alpha = {60^ \circ } \cr & \beta = {30^ \circ } \cr & \frac{{{\text{cos }}\alpha }}{{\cos \beta }} \cr & = \frac{{\cos {{60}^ \circ }}}{{\cos {{30}^ \circ }}} \cr & = \frac{{\frac{1}{2}}}{{\frac{{\sqrt 3 }}{2}}} \cr & = \frac{1}{2} \times \frac{2}{{\sqrt 3 }} \cr & = \frac{1}{{\sqrt 3 }} \cr & = 1:\sqrt 3 \cr} $$
343.
What will be the value of sin10ÃÂÃÂÃÂð - sin3 10ÃÂÃÂÃÂð?
Show Answer
Solution:
$$\eqalign{ & \sin 10 - \frac{4}{3}{\sin ^3}10 \cr & = \frac{{3\sin 10 - 4{{\sin }^3}10}}{3} \cr & = \frac{1}{3}\sin 3 \times {10^ \circ }\,\,\,\,\,\left[ {\because \sin A = 3\sin A - 4{{\sin }^3}A} \right] \cr & = \frac{1}{3} \times \frac{1}{2} \cr & = \frac{1}{6} \cr} $$
344.
What is the value of cosec(65ÃÂÃÂÃÂð + ÃÂÃÂÃÂø) - sec(25ÃÂÃÂÃÂð - ÃÂÃÂÃÂø) + tan2 20ÃÂÃÂÃÂð - cosec2 70ÃÂÃÂÃÂð?
Show Answer
Solution:
cosec(65° + θ) - sec(25° - θ) + tan220° - cosec270° = sec(25° - θ) - sec(25° - θ) + tan220° - sec220° = tan220° - sec220° = -1
345.
The value of, ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ - ÃÂÃÂ is?
Show Answer
Solution:
$$\eqalign{ & {\text{sec}}\theta \left( {\frac{{1 + \sin \theta }}{{{\text{cos}}\theta }} + \frac{{{\text{cos}}\theta }}{{1 + \sin \theta }}} \right) - 2{\text{ta}}{{\text{n}}^2}\theta \cr & {\bf{Shortcut method:}} \cr & {\text{Take, }}\theta = {0^ \circ } \cr & \Rightarrow {\text{sec }}{0^ \circ }\left( {\frac{{1 + \sin {0^ \circ }}}{{{\text{cos }}{0^ \circ }}} + \frac{{{\text{cos }}{0^ \circ }}}{{1 + \sin {0^ \circ }}}} \right) - 2{\text{ta}}{{\text{n}}^2}{0^ \circ } \cr & \Rightarrow 1\left( {\frac{{1 + 0}}{1} + \frac{1}{{1 + 0}}} \right) - 0 \cr & \Rightarrow 2 \cr} $$
346.
If sinÃÂÃÂÃÂÃÂÃÂÃÂÃÂø ÃÂÃÂÃÂÃÂÃÂàcosÃÂÃÂÃÂÃÂÃÂÃÂÃÂø = Then the value of sinÃÂÃÂÃÂÃÂÃÂÃÂÃÂø - cosÃÂÃÂÃÂÃÂÃÂÃÂÃÂø is where 0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂÃÂÃÂÃÂÃÂø 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð.
Show Answer
Solution:
$$\eqalign{ & \sin \theta \times \cos \theta = \frac{1}{2} \cr & {\text{Multiply by 2 both side}} \cr & 2\sin \theta \times \cos \theta = 1 \cr & \sin 2\theta = 1 \cr & \sin 2\theta = \sin {90^ \circ } \cr & 2\theta = {90^ \circ } \cr & \theta = {45^ \circ } \cr & {\text{So,}}\sin \theta - {\text{cos}}\theta \cr & = \sin {45^ \circ } - \cos {45^ \circ } \cr & = \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }} \cr & = 0{\text{ }} \cr} $$
347.
The value of following is, cos24ÃÂÃÂÃÂð + cos55ÃÂÃÂÃÂð + cos125ÃÂÃÂÃÂð + cos204ÃÂÃÂÃÂð + cos300ÃÂÃÂÃÂð ?
Show Answer
Solution:
The value of, cos24° + cos55° + cos125° + cos204° + cos300° We know that, cos(180° $$ \pm $$ θ) = -cosθ ⇒ cos24° + cos55° + cos (180° - 55°) + cos (180° + 24°) + cos (360° - 60°) ⇒ cos24° + cos55° - cos55° - cos24° + cos60° ⇒ cos60° ⇒ $$\frac{1}{2}$$
348.
If ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ then n = ?
(A) 1
(B) 0.5
(C) -1
(D) -0.5
Show Answer
Solution:
$$\eqalign{ & {\left\{ {\left( {\frac{{\sec \theta - 1}}{{\sec \theta + 1}}} \right)} \right\}^n} = {\text{cosec}}\,\theta - \cot \theta \cr & {\text{Put }}\theta = {45^ \circ } \cr & {\text{So}},\,{\left\{ {\left( {\frac{{\sec {{45}^ \circ } - 1}}{{\sec {{45}^ \circ } + 1}}} \right)} \right\}^n} = {\text{cosec}}\,{45^ \circ } - \cot {45^ \circ } \cr & \Rightarrow {\left\{ {\left( {\frac{{\sqrt 2 - 1}}{{\sqrt 2 + 1}}} \right)} \right\}^n} = \sqrt 2 - 1 \cr & {\text{Rationalize internally on left side, we get}} \cr & \Rightarrow {\left\{ {{{\left( {\sqrt 2 - 1} \right)}^2}} \right\}^n} = \sqrt 2 - 1 \cr & {\text{To equate }}n{\text{ should be }}\frac{1}{2} \cr & {\text{So, }}n = 0.5 \cr} $$
349.
If ÃÂÃÂ and ÃÂÃÂ then the value of ÃÂÃÂ is?
Show Answer
Solution:
$$\eqalign{ & \theta + \phi = \frac{\pi }{2} \cr & \theta + \phi = {90^ \circ }\,......(i) \cr & \sin \theta = \frac{1}{2} \cr & \sin \theta = {\text{sin 3}}{0^ \circ } = \frac{1}{2}\,......(ii) \cr & {\text{Put }}\theta = {30^ \circ }{\text{ in equation (i)}} \cr & {30^ \circ } + \phi = {90^ \circ } \cr & \phi = {60^ \circ } \cr & \sin \phi = \sin {60^ \circ } = \frac{{\sqrt 3 }}{2} \cr} $$
350.
If rsinÃÂÃÂÃÂø = 1, rcosÃÂÃÂÃÂø = ÃÂàthen the value of r2 tanÃÂÃÂÃÂø is?
Show Answer
Solution:
$$\eqalign{ & r\sin \theta = 1,{\text{ }}r\cos \theta = \sqrt 3 \cr & {\text{Put }}\theta = {30^ \circ } \cr & r = 2 \cr & {\text{So}},{\text{ }}{r^2}\tan \theta \cr & = {\left( 2 \right)^2} \times {\text{tan}}{30^ \circ } \cr & = 4 \times \frac{1}{{\sqrt 3 }} \cr & = \frac{4}{{\sqrt 3 }} \cr} $$