Practice MCQ Questions and Answer on Trigonometry

351.

If cos αcos β=a   and sin αsin β=b,   then the value of sin2β  in terms of a and b is?

  • (A) a2+1a2b2
  • (B) a2b2a2+b2
  • (C) a21a2b2
  • (D) a21a2+b2

352.

Solve the following to find its value in terms of trigonometric ratios.
(sinA + cosA)(1 - sinAcosA)

  • (A) sin3A + cos3A
  • (B) sin2A - cos2A
  • (C) [cosA - sinA][sin2A + cos2A]
  • (D) sin3A - cos3A

353.

What is the value of 5sin260° + 7sin245°+ 8cos245°?

  • (A) 25
  • (B) 574
  • (C) 454
  • (D) 10

354.

If θ is a positive acute angle and 4cos2θ - 1 = 0, then the value of tan(θ - 15°) is equal to?

  • (A) 0
  • (B) 1
  • (C) 3
  • (D) 13

355.

If cos(A - B) = 32 and sec A = 2, 0° â‰Â¤ A â‰Â¤ 90°, 0° â‰Â¤ B â‰Â¤ 90° then what is the measure of B?

  • (A) 60°
  • (B) 0°
  • (C) 30°
  • (D) 90°

356.

If θ is a acute angle and sin(θ + 18°) = 12, then the value of θ in circular measure is?

  • (A) π12 Radians
  • (B) π15 Radians
  • (C) 2π5 Radians
  • (D) 3π13 Radians

357.

If secθtanθsecθ+tanθ=17,θ,     lies in first quadrant, then the value of cosecθ+cot2θcosecθcot2θ   is:

  • (A) 195
  • (B) 3719
  • (C) 223
  • (D) 3712

358.

If secθtanθsecθ+tanθ=17,θ,     lies in first quadrant, then the value of cosecθ+cot2θcosecθcot2θ   is:

  • (A) 195
  • (B) 3719
  • (C) 223
  • (D) 3712

359.

If secθ + tanθ = p, (p > 1) then cosecθ+1cosecθ1=?

  • (A) 2p2
  • (B) p+1p1
  • (C) p2
  • (D) p1p+1

360.

If sec2A + tan2A = 3, then what is the value of cotA?

  • (A) 13
  • (B) 0
  • (C) 1
  • (D) 3