351.
If ÃÂÃÂ and ÃÂÃÂ then the value of ÃÂÃÂ in terms of a and b is?
Show Answer
Solution:
$$\eqalign{ & \frac{{{\text{cos }}\alpha }}{{{\text{cos }}\beta }} = a{\text{ }} \cr & \Rightarrow \cos {\text{ }}\alpha = a{\text{ }}\cos {\text{ }}\beta \cr & {\text{On squaring both sides}} \cr & {\cos ^2}\alpha = {a^2}{\cos ^2}\beta \cr & \Rightarrow 1 - {\sin ^2}\alpha = {a^2}\left( {1 - {{\sin }^2}\beta } \right)....(i) \cr & {\text{Again, }}\sin \alpha = {\text{ }}b\sin \beta \cr & {\text{Squaring both sides}} \cr & \Rightarrow {\sin ^2}\alpha = {\text{ }}{b^2}{\sin ^2}\beta \cr & {\text{Put the value of }}{\sin ^2}\alpha {\text{ in equation (i)}} \cr & \Rightarrow {\text{1}} - {b^2}{\sin ^2}\beta = {a^2} - {a^2}si{n^2}\beta \cr & \Rightarrow {a^2} - 1 = {a^2}si{n^2}\beta - {b^2}si{n^2}\beta \cr & \Rightarrow {a^2} - 1 = si{n^2}\beta \left( {{a^2} - {b^2}} \right) \cr & \Rightarrow si{n^2}\beta = \frac{{{a^2} - 1}}{{{a^2} - {b^2}}} \cr} $$
352.
Solve the following to find its value in terms of trigonometric ratios.
(sinA + cosA)(1 - sinAcosA)
(A) sin3A + cos3A
(B) sin2A - cos2A
(C) [cosA - sinA][sin2A + cos2A]
(D) sin3A - cos3A
Show Answer
Solution:
(sinA + cosA)(1 - sinA.cosA) = (sinA + cosA)[sin2A + cos2A - sinA.cosA] = (sin3A + cos3A)
353.
What is the value of 5sin2 60ÃÂÃÂÃÂð + 7sin2 45ÃÂÃÂÃÂð+ 8cos2 45ÃÂÃÂÃÂð?
Show Answer
Solution:
$$\eqalign{ & 5{\sin ^2}{60^ \circ } + 7{\sin ^2}{45^ \circ } + 8{\cos ^2}{45^ \circ } \cr & = 5{\left( {\frac{{\sqrt 3 }}{2}} \right)^2} + 7{\left( {\frac{1}{{\sqrt 2 }}} \right)^2} + 8{\left( {\frac{1}{{\sqrt 2 }}} \right)^2} \cr & = \frac{{15}}{4} + \frac{7}{2} + \frac{8}{2} \cr & = \frac{{15 + 14 + 16}}{4} \cr & = \frac{{45}}{4} \cr} $$
354.
If ÃÂÃÂÃÂø is a positive acute angle and 4cos2 ÃÂÃÂÃÂø - 1 = 0, then the value of tan(ÃÂÃÂÃÂø - 15ÃÂÃÂÃÂð) is equal to?
Show Answer
Solution:
$$\eqalign{ & {\text{4co}}{{\text{s}}^2}\theta - 1 = 0 \cr & \Rightarrow {\text{4co}}{{\text{s}}^2}\theta = 1 \cr & \Rightarrow {\text{co}}{{\text{s}}^2}\theta = \frac{1}{4} \cr & \Rightarrow \cos \theta = \frac{1}{2} = \cos {60^ \circ } \cr & \theta = {60^ \circ } \cr & \Rightarrow \tan \left( {\theta - {{15}^ \circ }} \right) \cr & \Rightarrow \tan \left( {{{60}^ \circ } - {{15}^ \circ }} \right) \cr & \Rightarrow \tan {45^ \circ } \cr & \Rightarrow 1 \cr} $$
355.
If cos(A - B) = and sec A = 2, 0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä A ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, 0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä B ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð then what is the measure of B?
(A) 60°
(B) 0°
(C) 30°
(D) 90°
Show Answer
Solution:
$$\eqalign{ & \cos \left( {A - B} \right) = \frac{{\sqrt 3 }}{2} \cr & \cos \left( {A - B} \right) = \cos {30^ \circ } \cr & A - B = {30^ \circ }........\left( {\text{i}} \right) \cr & \sec A = 2 \cr & \cos A = \frac{1}{2} = \cos {60^ \circ } \cr & A = {60^ \circ }........\left( {{\text{ii}}} \right) \cr & {\text{From equation }}\left( {\text{i}} \right){\text{ and }}\left( {{\text{ii}}} \right) \cr & A = {60^ \circ }\,\& \,B = {30^ \circ } \cr} $$
356.
If ÃÂÃÂÃÂø is a acute angle and sin(ÃÂÃÂÃÂø + 18ÃÂÃÂÃÂð) = then the value of ÃÂÃÂÃÂø in circular measure is?
(A) Radians
(B) Radians
(C) Radians
(D) Radians
Show Answer
Solution:
$$\eqalign{ & {\text{sin}}\left( {\theta + {{18}^ \circ }} \right){\text{ = }}\frac{1}{2} \cr & {\text{sin}}\left( {\theta + {{18}^ \circ }} \right) = {\text{sin }}{30^ \circ } \cr & \theta + {18^ \circ } = {30^ \circ } \cr & \therefore \theta = {12^ \circ } \cr & {\text{We know that,}} \cr & {180^ \circ } = \pi \cr & {12^ \circ } = \frac{\pi }{{{{180}^ \circ }}} \times 12 = \frac{\pi }{{15}} \cr} $$
357.
If ÃÂÃÂ ÃÂÃÂ lies in first quadrant, then the value of ÃÂÃÂ is:
Show Answer
Solution:
$$\eqalign{ & \frac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }} = \frac{1}{7} \cr & 7\sec \theta - 7\tan \theta = \sec \theta + \tan \theta \cr & 6\sec \theta = 8\tan \theta \cr & \sin \theta = \frac{6}{8} = \frac{3}{4} = \frac{P}{H} \cr & B = \sqrt {{4^2} - {3^2}} = \sqrt 7 \cr & \Rightarrow \frac{{{\text{cosec}}\,\theta + {{\cot }^2}\theta }}{{{\text{cosec}}\,\theta - {{\cot }^2}\theta }} \cr & = \frac{{\frac{H}{P} + {{\left( {\frac{B}{P}} \right)}^2}}}{{\frac{H}{P} - {{\left( {\frac{B}{P}} \right)}^2}}} \cr & = \frac{{\frac{4}{3} + {{\left( {\frac{{\sqrt 7 }}{3}} \right)}^2}}}{{\frac{4}{3} - {{\left( {\frac{{\sqrt 7 }}{3}} \right)}^2}}} \cr & = \frac{{\frac{4}{3} + \frac{7}{9}}}{{\frac{4}{3} - \frac{7}{9}}} \cr & = \frac{{\frac{{12 + 7}}{9}}}{{\frac{{12 - 7}}{9}}} \cr & = \frac{{19}}{5} \cr} $$
358.
If ÃÂÃÂ ÃÂÃÂ lies in first quadrant, then the value of ÃÂÃÂ is:
Show Answer
Solution:
$$\eqalign{ & \frac{{\sec \theta - \tan \theta }}{{\sec \theta + \tan \theta }} = \frac{1}{7} \cr & 7\sec \theta - 7\tan \theta = \sec \theta + \tan \theta \cr & 6\sec \theta = 8\tan \theta \cr & \sin \theta = \frac{6}{8} = \frac{3}{4} = \frac{P}{H} \cr & B = \sqrt {{4^2} - {3^2}} = \sqrt 7 \cr & \Rightarrow \frac{{{\text{cosec}}\,\theta + {{\cot }^2}\theta }}{{{\text{cosec}}\,\theta - {{\cot }^2}\theta }} \cr & = \frac{{\frac{H}{P} + {{\left( {\frac{B}{P}} \right)}^2}}}{{\frac{H}{P} - {{\left( {\frac{B}{P}} \right)}^2}}} \cr & = \frac{{\frac{4}{3} + {{\left( {\frac{{\sqrt 7 }}{3}} \right)}^2}}}{{\frac{4}{3} - {{\left( {\frac{{\sqrt 7 }}{3}} \right)}^2}}} \cr & = \frac{{\frac{4}{3} + \frac{7}{9}}}{{\frac{4}{3} - \frac{7}{9}}} \cr & = \frac{{\frac{{12 + 7}}{9}}}{{\frac{{12 - 7}}{9}}} \cr & = \frac{{19}}{5} \cr} $$
359.
If secÃÂÃÂÃÂø + tanÃÂÃÂÃÂø = p, (p > 1) then
Show Answer
Solution:
$$\eqalign{ & \sec \theta + \tan \theta = p \cr & \frac{{\sec \theta + \tan \theta }}{{\sec \theta - \tan \theta }} = \frac{p}{{\frac{1}{p}}} \cr & \frac{{\sec \theta + \tan \theta }}{{\sec \theta - \tan \theta }} = \frac{{{p^2}}}{1} \cr & {\text{Apply componendo and dividendo}} \cr & \frac{{\sec \theta }}{{\tan \theta }} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr & \frac{{\sec \theta .\cos \theta }}{{\tan \theta }} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr & \frac{{{\text{cosec }}\theta }}{1} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr & {\text{Apply again componendo and dividendo}} \cr & \frac{{{\text{cosec }}\theta + 1}}{{{\text{cosec }}\theta - 1}} = \frac{{{p^2}}}{1} \cr} $$
360.
If sec2 A + tan2 A = 3, then what is the value of cotA?
Show Answer
Solution:
Answer & Solution Answer: Option C No explanation is given for this question Let's Discuss on Board