Practice MCQ Questions and Answer on Trigonometry
131.
If cosÃÂÃÂÃÂø + sinÃÂÃÂÃÂø = $$\sqrt 2 $$ cosÃÂÃÂÃÂø, then cosÃÂÃÂÃÂø - sinÃÂÃÂÃÂø is?
- (A) $$\sqrt 2 $$ tanθ
- (B) -$$\sqrt 2 $$ cosθ
- (C) -$$\sqrt 2 $$ sinθ
- (D) $$\sqrt 2 $$ sinθ
132.
If $$\theta $$ be acute angle and $$\cos \theta = \frac{{15}}{{17}}{\text{,}}$$ ÃÂÃÂ then the value of $${\text{cot}}\left( {{{90}^ \circ } - \theta } \right)$$ ÃÂÃÂ is?
- (A) $$\frac{{2\sqrt 8 }}{{15}}$$
- (B) $$\frac{8}{{15}}$$
- (C) $$\frac{{\sqrt 2 }}{{17}}$$
- (D) $$\frac{{8\sqrt 2 }}{{17}}$$
133.
What is the value of $$1 + \frac{{{{\tan }^2}A}}{{1 + \sec A}}?$$
- (A) cosecA
- (B) cosA
- (C) secA
- (D) sinA
134.
Simplify the following expression:
$$\frac{{\cos A}}{{1 - \tan A}} + \frac{{\sin A}}{{1 - \cot A}} - \sin A$$
- (A) 1 + cosA
- (B) (1 + sinA)cosA
- (C) 1 + sinA
- (D) cosA
135.
If $$\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta - 3\cos \theta + 2}} = 1,\,\theta $$ ÃÂÃÂ ÃÂÃÂ lies in the first quadrant, then the value of $$\frac{{{{\tan }^2}\frac{\theta }{2} + {{\sin }^2}\frac{\theta }{2}}}{{\tan \theta + \sin \theta }}$$ ÃÂÃÂ ÃÂÃÂ is:
- (A) $$\frac{{2\sqrt 3 }}{{27}}$$
- (B) $$\frac{{7\sqrt 3 }}{{54}}$$
- (C) $$\frac{{2\sqrt 3 }}{9}$$
- (D) $$\frac{{5\sqrt 3 }}{{27}}$$
136.
The value of 8(sin6ÃÂÃÂÃÂø + cos6ÃÂÃÂÃÂø) - 12(sin4ÃÂÃÂÃÂø + cos4ÃÂÃÂÃÂø) is equal to?
- (A) 20
- (B) -20
- (C) -4
- (D) 4
137.
If A = 10ÃÂÃÂÃÂð, what is the value of: $$\frac{{12\sin 3A + 5\cos \left( {5A - {5^ \circ }} \right)}}{{9\sin \frac{{9A}}{2} - 4\cos \left( {5A + {{10}^ \circ }} \right)}}?$$
- (A) $$\frac{{6\sqrt 2 + 5}}{{9 - 2\sqrt 2 }}$$
- (B) $$\frac{{6\sqrt 2 - 5}}{{9 - 2\sqrt 2 }}$$
- (C) $$\frac{{9 - 2\sqrt 2 }}{{6\sqrt 2 + 5}}$$
- (D) $$\frac{{6\sqrt 2 + 5}}{{9 + 2\sqrt 2 }}$$
138.
If cos(A - B) = $$\frac{{\sqrt 3 }}{2}$$ and sec A = 2, 0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä A ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, 0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä B ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð then what is the measure of B?
- (A) 60°
- (B) 0°
- (C) 30°
- (D) 90°
139.
If $${\text{sin}}\left( {{{90}^ \circ } - \theta } \right)$$ ÃÂÃÂ + $${\text{cos}}\theta $$ÃÂÃÂ = $$\sqrt 2 {\text{cos}}\left( {{{90}^ \circ } - \theta } \right){\text{,}}$$ ÃÂÃÂ ÃÂÃÂ then the value of $${\text{cosec}}\theta $$ ÃÂÃÂ is?
- (A) $$\frac{1}{{\sqrt 3 }}$$
- (B) $$\frac{2}{3}$$
- (C) $$\sqrt {\frac{3}{2}} $$
- (D) $$\frac{1}{{\sqrt 2 }}$$
140.
What is the value of cosec(65ÃÂÃÂÃÂð + ÃÂÃÂÃÂø) - sec(25ÃÂÃÂÃÂð - ÃÂÃÂÃÂø) + tan220ÃÂÃÂÃÂð - cosec270ÃÂÃÂÃÂð?
- (A) -1
- (B) 0
- (C) 1
- (D) 2