Practice MCQ Questions and Answer on Trigonometry

131.

If cosθ + sinθ = $$\sqrt 2 $$ cosθ, then cosθ - sinθ is?

  • (A) $$\sqrt 2 $$ tanθ
  • (B) -$$\sqrt 2 $$ cosθ
  • (C) -$$\sqrt 2 $$ sinθ
  • (D) $$\sqrt 2 $$ sinθ

132.

If $$\theta $$ be acute angle and $$\cos \theta = \frac{{15}}{{17}}{\text{,}}$$   then the value of $${\text{cot}}\left( {{{90}^ \circ } - \theta } \right)$$   is?

  • (A) $$\frac{{2\sqrt 8 }}{{15}}$$
  • (B) $$\frac{8}{{15}}$$
  • (C) $$\frac{{\sqrt 2 }}{{17}}$$
  • (D) $$\frac{{8\sqrt 2 }}{{17}}$$

133.

What is the value of $$1 + \frac{{{{\tan }^2}A}}{{1 + \sec A}}?$$

  • (A) cosecA
  • (B) cosA
  • (C) secA
  • (D) sinA

134.

Simplify the following expression:
$$\frac{{\cos A}}{{1 - \tan A}} + \frac{{\sin A}}{{1 - \cot A}} - \sin A$$

  • (A) 1 + cosA
  • (B) (1 + sinA)cosA
  • (C) 1 + sinA
  • (D) cosA

135.

If $$\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta - 3\cos \theta + 2}} = 1,\,\theta $$     lies in the first quadrant, then the value of $$\frac{{{{\tan }^2}\frac{\theta }{2} + {{\sin }^2}\frac{\theta }{2}}}{{\tan \theta + \sin \theta }}$$    is:

  • (A) $$\frac{{2\sqrt 3 }}{{27}}$$
  • (B) $$\frac{{7\sqrt 3 }}{{54}}$$
  • (C) $$\frac{{2\sqrt 3 }}{9}$$
  • (D) $$\frac{{5\sqrt 3 }}{{27}}$$

136.

The value of 8(sin6θ + cos6θ) - 12(sin4θ + cos4θ) is equal to?

  • (A) 20
  • (B) -20
  • (C) -4
  • (D) 4

137.

If A = 10°, what is the value of: $$\frac{{12\sin 3A + 5\cos \left( {5A - {5^ \circ }} \right)}}{{9\sin \frac{{9A}}{2} - 4\cos \left( {5A + {{10}^ \circ }} \right)}}?$$

  • (A) $$\frac{{6\sqrt 2 + 5}}{{9 - 2\sqrt 2 }}$$
  • (B) $$\frac{{6\sqrt 2 - 5}}{{9 - 2\sqrt 2 }}$$
  • (C) $$\frac{{9 - 2\sqrt 2 }}{{6\sqrt 2 + 5}}$$
  • (D) $$\frac{{6\sqrt 2 + 5}}{{9 + 2\sqrt 2 }}$$

138.

If cos(A - B) = $$\frac{{\sqrt 3 }}{2}$$ and sec A = 2, 0° â‰Â¤ A â‰Â¤ 90°, 0° â‰Â¤ B â‰Â¤ 90° then what is the measure of B?

  • (A) 60°
  • (B) 0°
  • (C) 30°
  • (D) 90°

139.

If $${\text{sin}}\left( {{{90}^ \circ } - \theta } \right)$$   + $${\text{cos}}\theta $$  = $$\sqrt 2 {\text{cos}}\left( {{{90}^ \circ } - \theta } \right){\text{,}}$$    then the value of $${\text{cosec}}\theta $$   is?

  • (A) $$\frac{1}{{\sqrt 3 }}$$
  • (B) $$\frac{2}{3}$$
  • (C) $$\sqrt {\frac{3}{2}} $$
  • (D) $$\frac{1}{{\sqrt 2 }}$$

140.

What is the value of cosec(65° + θ) - sec(25° - θ) + tan220° - cosec270°?

  • (A) -1
  • (B) 0
  • (C) 1
  • (D) 2