211.
The expression (tanÃÂÃÂÃÂø + cotÃÂÃÂÃÂø)(secÃÂÃÂÃÂø + tanÃÂÃÂÃÂø)(1 - sinÃÂÃÂÃÂø), 0ÃÂÃÂÃÂð ÃÂÃÂÃÂø 90ÃÂÃÂÃÂð is equal to:
(A) sinθ
(B) secθ
(C) cosecθ
(D) cotθ
Show Answer
Solution:
$$\eqalign{ & \left( {\tan \theta + \cot \theta } \right)\left( {\sec \theta + \tan \theta } \right)(1 - \sin \theta ) \cr & = \left( {\frac{{\sin \theta }}{{\cos \theta }} + \frac{{\cos \theta }}{{\sin \theta }}} \right)\left( {\frac{1}{{\cos \theta }} + \frac{{\sin \theta }}{{\cos \theta }}} \right)\left( {1 - \sin \theta } \right) \cr & = \left( {\frac{{{{\sin }^2}\theta + {{\cos }^2}\theta }}{{\cos \theta \sin \theta }}} \right)\left( {\frac{{1 + \sin \theta }}{{\cos \theta }}} \right)\left( {1 - \sin \theta } \right) \cr & = \left( {\frac{1}{{\cos \theta \sin \theta }}} \right)\left( {\frac{{1 - {{\sin }^2}\theta }}{{\cos \theta }}} \right) \cr & = \left( {\frac{1}{{\cos \theta \sin \theta }}} \right)\left( {\frac{{{{\cos }^2}\theta }}{{\cos \theta }}} \right) \cr & = \frac{1}{{\sin \theta }} \cr & = {\text{cosec}}\,\theta \cr} $$
212.
What is the value of
(A) -sin2θ
(B) -cos2θ
(C) cos2θ
(D) sin2θ
Show Answer
Solution:
$$\eqalign{ & \frac{{{{\left[ {1 - \tan \left( {{{90}^ \circ } - \theta } \right)} \right]}^2}}}{{\left[ {{{\cos }^2}\left( {{{90}^ \circ } - \theta } \right)} \right]}} - 1 \cr & {\text{By putting }}\theta = {45^ \circ } \cr & \Rightarrow \frac{{{{\left[ {1 - \tan \left( {{{90}^ \circ } - {{45}^ \circ }} \right)} \right]}^2}}}{{\left[ {{{\cos }^2}\left( {{{90}^ \circ } - {{45}^ \circ }} \right)} \right]}} - 1 \cr & \Rightarrow \frac{{{{\left[ {1 - \tan {{45}^ \circ }} \right]}^2}}}{{{{\cos }^2}{{45}^ \circ }}} - 1 \cr & \Rightarrow 0 - 1 \cr & \Rightarrow - 1 \cr & {\text{By satisfying in option A}} \cr & \Rightarrow - \sin 2\theta \cr & \Rightarrow - \sin {90^ \circ } \cr & \Rightarrow - 1 \cr} $$
213.
ÃÂÃÂÃÂàÃÂÃÂÃÂàÃÂÃÂÃÂÃÂÃÂÃÂÃÂø ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂà45ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð is equal to:
(A) cosec2θ
(B) sec2θ
(C) cot2θ
(D) 2tan2θ
Show Answer
Solution:
$$\eqalign{ & {\left( {\frac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3} - \cos \theta }}} \right)^2} + 1 \cr & = \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}{\left( {\frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}} \right)^2} + 1 \cr & = {\tan ^2}\theta + 1 \cr & = {\sec ^2}\theta \cr} $$
214.
Find
Show Answer
Solution:
$$\eqalign{ & \cos \left( { - \frac{{7\pi }}{2}} \right) \cr & = \cos 7 \times \frac{{180}}{2} \cr & = \cos 630 \cr & = \cos \left( {2 \times 360 - 90} \right) \cr & = \cos 90 \cr & = 0 \cr} $$
215.
(A) cosec2θ
(B) sec2θ
(C) cos2θ
(D) sin2θ
Show Answer
Solution:
$$\eqalign{ & {\left( {\frac{{1 - \tan \theta }}{{1 - \cot \theta }}} \right)^2} + 1 \cr & = {\left( {\frac{{1 - \tan \theta }}{{\frac{{\tan \theta - 1}}{{\tan \theta }}}}} \right)^2} + 1 \cr & = \frac{{\left( {1 - \tan \theta } \right){{\tan }^2}\theta }}{{\left( {1 - \tan \theta } \right)}} + 1 \cr & = {\tan ^2}\theta + 1 \cr & = {\sec ^2}\theta \cr} $$
216.
The value of . - ÃÂÃÂ . + ÃÂÃÂ is equal to?
Show Answer
Solution:
$$\eqalign{ & \frac{1}{{\sqrt 2 }}{\text{sin}}\frac{\pi }{6}{\text{.cos}}\frac{\pi }{4} - \cot \frac{\pi }{3}{\text{.sec}}\frac{\pi }{6}{\text{ + }}\frac{{5\tan \frac{\pi }{4}}}{{12\sin \frac{\pi }{2}}} \cr & \Rightarrow \frac{1}{{\sqrt 2 }} \times \frac{1}{2} \times \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 3 }} \times \frac{2}{{\sqrt 3 }} + \frac{{5 \times 1}}{{12 \times 1}} \cr & \Rightarrow \frac{1}{4} - \frac{2}{3} + \frac{5}{{12}} \cr & \Rightarrow \frac{{3 - 8 + 5}}{{12}} \cr & \Rightarrow 0 \cr & {\text{ }} \cr} $$
217.
If sec2 ÃÂÃÂÃÂø + tan2 ÃÂÃÂÃÂø = ÃÂà0ÃÂÃÂÃÂð ÃÂÃÂÃÂø 90ÃÂÃÂÃÂð, then (cosÃÂÃÂÃÂø + sinÃÂÃÂÃÂø) is equal to
Show Answer
Solution:
$$\eqalign{ & {\sec ^2}\theta + {\tan ^2}\theta = 3\frac{1}{2} \cr & \Rightarrow 1 + {\tan ^2}\theta + {\tan ^2}\theta = \frac{7}{2} \cr & \Rightarrow 2{\tan ^2}\theta = \frac{7}{2} - 1 \cr & \Rightarrow 2{\tan ^2}\theta = \frac{5}{2} \cr & \Rightarrow 3{\tan ^2}\theta = \frac{5}{4} \cr & \Rightarrow \tan \theta = \frac{{\sqrt 5 \to P}}{{2 \to B}} \cr & H = \sqrt {5 + 4} = 3 \cr & \therefore \,\cos \theta + \sin \theta \cr & = \frac{2}{3} + \frac{{\sqrt 5 }}{3} \cr & = \frac{{2 + \sqrt 5 }}{3} \cr} $$
218.
The value of sin2 65ÃÂÃÂÃÂð + sin2 25ÃÂÃÂÃÂð + cos2 35ÃÂÃÂÃÂð + cos2 55ÃÂÃÂÃÂð is?
Show Answer
Solution:
$$\eqalign{ & \Rightarrow {\sin ^2}{65^ \circ } + {\sin ^2}{25^ \circ } + {\cos ^2}{35^ \circ } + {\cos ^2}{55^ \circ } \cr & \Rightarrow {\sin ^2}{65^ \circ } + {\sin ^2}\left( {{{90}^ \circ } - {{65}^ \circ }} \right) + \left[ {{{\cos }^2}{{35}^ \circ } + {{\cos }^2}\left( {{{90}^ \circ } - {{35}^ \circ }} \right)} \right] \cr & \Rightarrow \left( {{{\sin }^2}{{65}^ \circ } + {{\cos }^2}{{65}^ \circ }} \right) + \left( {{{\cos }^2}{{35}^ \circ } + si{n^2}{{35}^ \circ }} \right) \cr & \Rightarrow 1 + 1 \cr & \Rightarrow 2 \cr} $$
219.
If rsinÃÂÃÂÃÂø = 1, rcosÃÂÃÂÃÂø = ÃÂàthen the value of r2 tanÃÂÃÂÃÂø is?
Show Answer
Solution:
$$\eqalign{ & r\sin \theta = 1,{\text{ }}r\cos \theta = \sqrt 3 \cr & {\text{Put }}\theta = {30^ \circ } \cr & r = 2 \cr & {\text{So}},{\text{ }}{r^2}\tan \theta \cr & = {\left( 2 \right)^2} \times {\text{tan}}{30^ \circ } \cr & = 4 \times \frac{1}{{\sqrt 3 }} \cr & = \frac{4}{{\sqrt 3 }} \cr} $$
220.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB = 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and AB : BC = 2 : 1, then value of (sinA + cotC) = ?
Show Answer
Solution:
$$\eqalign{ & {\text{AC}} = \sqrt {{2^2} + {1^2}} = \sqrt 5 \cr & {\text{sin A}} + \operatorname{cotC} \cr & \frac{{{\text{BC}}}}{{{\text{AC}}}} + \frac{{{\text{BC}}}}{{{\text{AB}}}} \cr & \frac{1}{{\sqrt 5 }} + \frac{1}{2} \cr & \Rightarrow \frac{{2 + \sqrt 5 }}{{2\sqrt 5 }} \cr} $$