Practice MCQ Questions and Answer on Triangles
1.
A point D is taken on the side BC of a right-angled triangle ABC, where AB is hypotenuse. Then
- (A) AB2 + CD2 = AD2 + BC2
- (B) CD2 + BD2 = 2AD2
- (C) AB2 + AC2 = 2AD2
- (D) AB2 = AD2 + BC2
2.
If two medians BE and CF of a triangle ABC, intersect each other at G and if BG = CG, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBGC = 60ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, BC = 8 cm, then area of the triangle ABC is:
- (A) $$96\sqrt 3 $$ cm2
- (B) $$48\sqrt 3 $$ cm2
- (C) 48 cm2
- (D) $$54\sqrt 3 $$ cm2
3.
Length of the sides of a triangle are a, b and c respectively. If a2 + b2 + c2 = ab + bc + ca then the triangle is:
- (A) Isosceles
- (B) Equilateral
- (C) Scalene
- (D) Right-angled
4.
An isosceles triangle ABC is right-angled at B. D is a point inside the triangle ABC. P and Q are the feet of the perpendiculars drawn from D on the side AB and AC respectively of ÃÂÃÂÃÂÃÂÃÂÃÂABC. If AP = a cm, AQ = b cm and ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBAD = 15ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, sin 75ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð = ?
- (A) $$\frac{{2b}}{{\sqrt 3 a}}$$
- (B) $$\frac{a}{{2b}}$$
- (C) $$\frac{{\sqrt 3 a}}{{2b}}$$
- (D) $$\frac{{2a}}{{\sqrt 3 b}}$$
5.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàA + ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB = 65ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB + ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàC = 140ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then find ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB.
- (A) 40°
- (B) 25°
- (C) 35°
- (D) 20°
6.
In a triangle ABC, AB + BC = 12 cm, BC + CA = 14 cm and CA + AB = 18 cm. Find the radius of the circle (in cm) which has the same perimeter as the triangle
- (A) $$\frac{5}{2}$$
- (B) $$\frac{7}{2}$$
- (C) $$\frac{9}{2}$$
- (D) $$\frac{{11}}{2}$$
7.
Which of the following is a true statement
- (A) Two similar triangles are always congruent
- (B) Two similar triangles have equal areas
- (C) Two triangles are similar if their corresponding sides are proportional
- (D) Two polygons are similar if their corresponding sides are proportional
8.
I is the incentre of a triangle ABC. If ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàACB = 55ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàABC = 65ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð then the value of ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBIC is
- (A) 130°
- (B) 120°
- (C) 140°
- (D) 110°
9.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàA = 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and AD ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂ¥ BC where D lies on BC. If BC = 8 cm, AD = 6 cm, then arÃÂÃÂÃÂÃÂÃÂÃÂABC : arÃÂÃÂÃÂÃÂÃÂÃÂACD = ?
- (A) 4 : 3
- (B) 25 : 16
- (C) 16 : 9
- (D) 25 : 9
10.
Incenter of ÃÂÃÂÃÂÃÂÃÂÃÂABC is I. ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàABC = 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàACB = 70ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð. ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBIC is:
- (A) 115°
- (B) 100°
- (C) 110°
- (D) 105°