Practice MCQ Questions and Answer on Triangles

1.

If two angles of a triangle are 21° and 38°, then the triangle is :

  • (A) Right-angled triangle
  • (B) Acute-angled triangle
  • (C) Obtuse-angled triangle
  • (D) Isosceles triangle

2.

In a triangle ABC, âˆÂ BAC = 90° and AD is perpendicular to BC. If AD = 6 cm and BD = 4 cm then the length of BC is:

  • (A) 8 cm
  • (B) 10 cm
  • (C) 9 cm
  • (D) 13 cm

3.

Possible length of the sides of a triangle are:

  • (A) 2cm, 3cm, 6cm
  • (B) 3cm, 4cm, 5cm
  • (C) 2.5cm, 3.5cm, 6cm
  • (D) 4cm, 4cm, 9cm

4.

In a ΔABC, AB = BC, âˆÂ B = x° and âˆÂ A = (2x - 20)°, Then âˆÂ B is :

  • (A) 54°
  • (B) 30°
  • (C) 40°
  • (D) 44°

5.

In a ΔABC, âˆÂ A + âˆÂ B = 75° and âˆÂ B + âˆÂ C = 140°, then âˆÂ B is:

  • (A) 40°
  • (B) 35°
  • (C) 50°
  • (D) 45°

6.

ABC is a triangle, PQ is line segment intersecting AB is P and AC in Q and PQ || BC. The ratio of AP : BP = 3 : 5 and length of PQ is 18 cm. The length of BC is:

  • (A) 28 cm
  • (B) 48 cm
  • (C) 84 cm
  • (D) 42 cm

7.

In ΔABC, âˆÂ B = 60° and âˆÂ C = 40°. If AD and AE be respectively the internal bisector of âˆÂ A and perpendicular on BC, then the measure of âˆÂ DAE is

  • (A) 5°
  • (B) 10°
  • (C) 40°
  • (D) 60°

8.

In a ΔABC, âˆÂ A + âˆÂ B = 118°, âˆÂ A + âˆÂ C = 96°. Find the value of âˆÂ A.

  • (A) 36°
  • (B) 40°
  • (C) 30°
  • (D) 34°

9.

In ΔABC, âˆÂ BAC = 90° and AB = 12 BC, Then the measure of âˆÂ ACB is :

  • (A) 60°
  • (B) 30°
  • (C) 45°
  • (D) 15°

10.

Let O be the in-centre of a triangle ABC and D be a point on the side BC of ΔABC, such that OD âŠÂ¥ BC. If âˆÂ BOD = 15°, then âˆÂ ABC = ?

  • (A) 75°
  • (B) 45°
  • (C) 150°
  • (D) 90°