Practice MCQ Questions and Answer on Triangles
71.
D is any point on side AC of ÃÂÃÂÃÂÃÂÃÂÃÂABC. If P, Q, X, Y are the mid-point of AB, BC, AD and DC respectively, then the ratio of PX and QY is
- (A) 1 : 2
- (B) 1 : 1
- (C) 2 : 1
- (D) 2 : 3
72.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBAC = 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and AD ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂ¥ BC. If BD = 3 cm and CD = 4 cm, then length of AD is :
- (A)
cm - (B) 3.5 cm
- (C) 6 cm
- (D) 5 cm
73.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàA + ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB = 65ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB + ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàC = 140ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then find ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB.
- (A) 40°
- (B) 25°
- (C) 35°
- (D) 20°
74.
ABC is an isosceles triangle with AB = AC. The side BA is produced to D such that AB = AD. If ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàABC = 30ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBCD is equal to
- (A) 45°
- (B) 90°
- (C) 30°
- (D) 60°
75.
In a ÃÂÃÂÃÂÃÂÃÂÃÂABC, If 2ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàA = 3ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB = 6ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàC, then the value of ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB is:
- (A) 60°
- (B) 30°
- (C) 45°
- (D) 90°
76.
The circumcentre of a triangle ABC is O. If ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBAC = 85ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBCA = 75ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then the value of ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàOAC is
- (A) 40°
- (B) 60°
- (C) 70°
- (D) 90°
77.
In a triangle ABC, BC is produced to D so that CD = AC. If ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBAD = 111ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàACB = 80ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then the measure of ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàABC is:
- (A) 31°
- (B) 33°
- (C) 35°
- (D) 29°
78.
Which of the following is a true statement
- (A) Two similar triangles are always congruent
- (B) Two similar triangles have equal areas
- (C) Two triangles are similar if their corresponding sides are proportional
- (D) Two polygons are similar if their corresponding sides are proportional
79.
The orthocenter of a triangle is the point where?
- (A) The medians meet
- (B) The altitudes meet
- (C) The right bisectors of the sides of
- (D) The bisectors of the angles
80.
In a triangle ABC, AB + BC = 12 cm, BC + CA = 14 cm and CA + AB = 18 cm. Find the radius of the circle (in cm) which has the same perimeter as the triangle
- (A)
- (B)
- (C)
- (D)