Practice MCQ Questions and Answer on Triangles

1.

In ΔABC, âˆÂ BAC = 90° and AD âŠÂ¥ BC. If BD = 3 cm and CD = 4 cm, then length of AD is :

  • (A) $$2\sqrt 3 $$ cm
  • (B) 3.5 cm
  • (C) 6 cm
  • (D) 5 cm

2.

If two angles of a triangle are 21° and 38°, then the triangle is :

  • (A) Right-angled triangle
  • (B) Acute-angled triangle
  • (C) Obtuse-angled triangle
  • (D) Isosceles triangle

3.

In ΔPQR, straight line parallel to the base QR cuts PQ at X and PR at Y. If PX : XQ = 5 : 6, then XY : QR will be

  • (A) 5 : 11
  • (B) 6 : 5
  • (C) 11 : 6
  • (D) 11 : 5

4.

If ABC is an equilateral triangle and P, Q, R respectively denote the middle points of AB, BC, CA then

  • (A) PQR must be an equilateral triangle
  • (B) PQ + QR = PQR + AB
  • (C) PQ + QR = PR + 2AB
  • (D) PQR must be a right angled

5.

In ΔABC, âˆÂ A + âˆÂ B = 65°, âˆÂ B + âˆÂ C = 140°, then find âˆÂ B.

  • (A) 40°
  • (B) 25°
  • (C) 35°
  • (D) 20°

6.

If the three angles of a triangle are: $${\left(x + 15 \right)^ \circ },$$   $${\left({\frac{{6x}}{5} + 6} \right)^ \circ }$$  and $${\left({\frac{{2x}}{3} + 30} \right)^ \circ }$$   then the triangle is:

  • (A) Isosceles
  • (B) Equilateral
  • (C) Right angled
  • (D) Scalene

7.

âˆÂ A + $$\frac{1}{2}$$ âˆÂ B + âˆÂ C = 140°, then âˆÂ B is :

  • (A) 50°
  • (B) 80°
  • (C) 40°
  • (D) 60°

8.

If the measures of the sides of triangle are (x2 - 1), (x2 + 1) and 2x cm, then the triangle would be :

  • (A) Equilateral
  • (B) Acute-angled
  • (C) Right-Angled
  • (D) Isosceles

9.

O is the incentre of ΔABC and âˆÂ A = 30°, then âˆÂ BOC is

  • (A) 100°
  • (B) 105°
  • (C) 110°
  • (D) 90°

10.

In ΔABC, âˆÂ BAC = 90° and AB = $$\frac{1}{2}$$ BC, Then the measure of âˆÂ ACB is :

  • (A) 60°
  • (B) 30°
  • (C) 45°
  • (D) 15°