Practice MCQ Questions and Answer on Triangles
121.
In a triangle ABC, AB = AC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBAC = 40ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð then the external angle at B is :
- (A) 90°
- (B) 70°
- (C) 110°
- (D) 80°
122.
For a triangle base is 6
- (A) 3
cm - (B) 4.5 cm
- (C) 4
cm - (D) 2
cm
123.
The length of the two sides forming the right angle of a right angled triangle are 6 cm and 8 cm. The length of its circum-radius is :
- (A) 5 cm
- (B) 7 cm
- (C) 6 cm
- (D) 10 cm
124.
BL and CM are medians of ÃÂÃÂÃÂÃÂÃÂÃÂABC right-angled at A and BC = 5 cm. If BL =
- (A)
cm - (B)
cm - (C)
cm - (D)
cm
125.
In an equilateral triangle ABC, G is the centroid. Each side of the triangle is 6 cm. The length of AG is:
- (A)
cm - (B)
cm - (C)
cm - (D)
cm
126.
If two medians BE and CF of a triangle ABC, intersect each other at G and if BG = CG, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBGC = 60ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, BC = 8 cm, then area of the triangle ABC is:
- (A)
cm2 - (B)
cm2 - (C) 48 cm2
- (D)
cm2
127.
Consider the following statements :
I. Three sides of a triangle are equal to three sides of another triangle, then the triangles are congruent.
II. If three angles of a triangle are respectively equal to three angles of another triangle, then the two triangles are congruent.
Of these statements :
- (A) I and II both are true
- (B) I is true and II is false
- (C) I is false and II is true
- (D) None of these
128.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàA + ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB = 65ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB + ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàC = 140ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then find ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB.
- (A) 40°
- (B) 25°
- (C) 35°
- (D) 20°
129.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, AC = BC and ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàABC = 50ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, the side BC is produced to D so that BC = CD then the value of ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBAD is:
- (A) 80°
- (B) 40°
- (C) 90°
- (D) 50°
130.
Let O be the in-centre of a triangle ABC and D be a point on the side BC of ÃÂÃÂÃÂÃÂÃÂÃÂABC, such that OD ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂÃÂ¥ BC. If ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàBOD = 15ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð, then ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàABC = ?
- (A) 75°
- (B) 45°
- (C) 150°
- (D) 90°