Practice MCQ Questions and Answer on Triangles

91.

In ΔABC, AD âŠÂ¥ BC and AD = BD × DC. The measure of âˆÂ BAC is : 2

  • (A) 75°
  • (B) 90°
  • (C) 45°
  • (D) 60°

92.

In a triangle ABC, âˆÂ A = 90°, âˆÂ C = 55°, $${AD}$$ âŠÂ¥ $${BC}$$. What is the value of âˆÂ BAD ?

  • (A) 35°
  • (B) 60°
  • (C) 45°
  • (D) 55°

93.

For a triangle ABC, D and E are two points on AB and AC such that AD = $$\frac{1}{4}$$ AB, AE = $$\frac{1}{4}$$ AC. If BC = 12 cm, then DE is :

  • (A) 5 cm
  • (B) 4 cm
  • (C) 3 cm
  • (D) 6 cm

94.

In a ΔABC, AB = AC and BA is produced to D such that AC = AD. Then the âˆÂ BCD is :

  • (A) 100°
  • (B) 60°
  • (C) 80°
  • (D) 90°

95.

Possible length of the sides of a triangle are:

  • (A) 2cm, 3cm, 6cm
  • (B) 3cm, 4cm, 5cm
  • (C) 2.5cm, 3.5cm, 6cm
  • (D) 4cm, 4cm, 9cm

96.

If the measure of the angles of a triangle are in the ratio 1 : 2 : 3 and if the length of the smallest side of the triangle is 10 cm, then the length of the longest side is:

  • (A) 20 cm
  • (B) 25 cm
  • (C) 30 cm
  • (D) 35 cm

97.

ABC is a right angled triangled, right angled at C and P is the length of the perpendicular from C on AB. If a, b and c are the length of the sides BC, CA and AB respectively, then

  • (A) $$\frac{1}{{{p^2}}} = \frac{1}{{{b^2}}} - \frac{1}{{{a^2}}}$$
  • (B) $$\frac{1}{{{p^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}}$$
  • (C) $$\frac{1}{{{p^2}}} + \frac{1}{{{a^2}}} = - \frac{1}{{{b^2}}}$$
  • (D) $$\frac{1}{{{p^2}}} = \frac{1}{{{a^2}}} - \frac{1}{{{b^2}}}$$

98.

In a ΔABC, If 2âˆÂ A = 3âˆÂ B = 6âˆÂ C, then the value of âˆÂ B is:

  • (A) 60°
  • (B) 30°
  • (C) 45°
  • (D) 90°

99.

BL and CM are medians of ΔABC right-angled at A and BC = 5 cm. If BL = $$\frac{{3\sqrt 5 }}{2}$$ cm, then the length of CM is

  • (A) $$2\sqrt 5 $$  cm
  • (B) $$5\sqrt 2 $$  cm
  • (C) $$10\sqrt 2 $$  cm
  • (D) $$4\sqrt 5 $$  cm

100.

In a ΔABC, âˆÂ A + âˆÂ B = 75° and âˆÂ B + âˆÂ C = 140°, then âˆÂ B is:

  • (A) 40°
  • (B) 35°
  • (C) 50°
  • (D) 45°