Practice MCQ Questions and Answer on Trigonometry

91.

If tan θ = 1, then the value of $$\frac{{8\sin \theta + 5\cos \theta }}{{{{\sin }^3}\theta - 2{{\cos }^3}\theta + 7\cos \theta }}$$     is?

  • (A) 2
  • (B) $${\text{2}}\frac{1}{2}$$
  • (C) 3
  • (D) $$\frac{4}{5}$$

92.

If cos53° = $$\frac{x}{y},$$ then sec53° + cot37° is equal to:

  • (A) $$\frac{{x + \sqrt {{y^2} - {x^2}} }}{y}$$
  • (B) $$\frac{{x + \sqrt {{y^2} - {x^2}} }}{x}$$
  • (C) $$\frac{{y + \sqrt {{y^2} - {x^2}} }}{x}$$
  • (D) $$\frac{{y + \sqrt {{y^2} - {x^2}} }}{y}$$

93.

If θ be acute angle and tan(4θ - 50°) = cot(50° - θ), then the value of θ in degrees is?

  • (A) 30°
  • (B) 40°
  • (C) 50°
  • (D) 20°

94.

If $$\sin \left( {\theta + {{30}^ \circ }} \right) = \frac{3}{{\sqrt {12} }}{\text{,}}$$     then find $${\text{co}}{{\text{s}}^2}\theta ?$$

  • (A) $$\frac{1}{4}$$
  • (B) $$\frac{3}{4}$$
  • (C) $$\frac{{\sqrt 3 }}{2}$$
  • (D) $$\frac{1}{2}$$

95.

What is the value of $$\frac{{\left[ {1 - \tan \left( {90 - \theta } \right) + \sec \left( {90 - \theta } \right)} \right]}}{{\left[ {\tan \left( {90 - \theta } \right) - \sec \left( {90 - \theta } \right) + 1} \right]}}?$$

  • (A) $$\cot \frac{\theta }{2}$$
  • (B) $$\tan \frac{\theta }{2}$$
  • (C) sinθ
  • (D) cosθ

96.

The value of $${\left( {\frac{{1 - \cot \theta }}{{1 - \tan \theta }}} \right)^2} + 1,$$    0° θ 90°, is equal to:

  • (A) cosec2θ
  • (B) sin2θ
  • (C) cos2θ
  • (D) sec2θ

97.

The value of the expression 2(sin6θ + cos6θ) - 3(sin4θ + cos4θ) + 1 is?

  • (A) -1
  • (B) 0
  • (C) 1
  • (D) 2

98.

If tanA = n tanB and sinA = m sinB, then the value of cos2A = ?

  • (A) $$\frac{{{m^2} + 1}}{{{n^2} + 1}}$$
  • (B) $$\frac{{{m^2} + 1}}{{{n^2} - 1}}$$
  • (C) $$\frac{{{m^2} - 1}}{{{n^2} - 1}}$$
  • (D) $$\frac{{{m^2} - 1}}{{{n^2} + 1}}$$

99.

If 7sinθ + 3cosθ = 4, (0° â‰Â¤ θ â‰Â¤ 90°), then the value of θ is?22

  • (A) $$\frac{\pi }{2}$$
  • (B) $$\frac{\pi }{3}$$
  • (C) $$\frac{\pi }{6}$$
  • (D) $$\frac{\pi }{4}$$

100.

The expression of $$\frac{{\cot \theta + \operatorname{cosec} \theta - 1}}{{\cot \theta + \operatorname{cosec} \theta + 1}}$$    is equal to?

  • (A) $$\frac{{1 + \cos \theta }}{{\sin \theta }}$$
  • (B) $$\frac{{1 - \cos \theta }}{{\sin \theta }}$$
  • (C) $$\frac{{\cot \theta + 1}}{{\operatorname{cosec} \theta }}$$
  • (D) $$\frac{{\cot \theta - 1}}{{\sin \theta }}$$