Practice MCQ Questions and Answer on Trigonometry

81.

If 2cos2θ + 3sinθ = 3, where 0° θ 90°, then what is the value of sin22θ + cos2θ + tan22θ + cosec22θ?

  • (A) $$\frac{{29}}{6}$$
  • (B) $$\frac{{29}}{3}$$
  • (C) $$\frac{{35}}{6}$$
  • (D) $$\frac{{35}}{{12}}$$

82.

If 1 + sin2θ - 3sinθcosθ = 0, then the value of cotθ is:

  • (A) 2
  • (B) $$\frac{1}{3}$$
  • (C) $$\frac{1}{2}$$
  • (D) 0

83.

If tan2A - 6tanA + 9 = 0, 0° A 90°, What is the value of 6cotA + $$8\sqrt {10} $$ cosA?

  • (A) $$10\sqrt {10} $$
  • (B) 14
  • (C) 10
  • (D) $$8\sqrt {10} $$

84.

In ΔABC, âˆÂ B = 90° and AB : BC = 2 : 1, then value of (sinA + cotC) = ?

  • (A) $$3 + \sqrt 5 $$
  • (B) $$\frac{{2 + \sqrt 5 }}{{2\sqrt 5 }}$$
  • (C) $$2 + \sqrt 5 $$
  • (D) $$3\sqrt 5 $$

85.

The value of $$\frac{{\sec \theta \left( {1 - \sin \theta } \right)\left( {\sin \theta + \cos \theta } \right)\left( {\sec \theta + \tan \theta } \right)}}{{\sin \theta \left( {1 + \tan \theta } \right) + \cos \theta \left( {1 + \cot \theta } \right)}}$$        is equal to:

  • (A) 2cosθ
  • (B) cosecθsecθ
  • (C) 2sinθ
  • (D) sinθcosθ

86.

$${\left( {\frac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3} - \cos \theta }}} \right)^2} + 1,$$     θ â‰Â  45° is equal to:

  • (A) cosec2θ
  • (B) sec2θ
  • (C) cot2θ
  • (D) 2tan2θ

87.

The value of coses260° + sec260° - cot260° + tan230° will be?

  • (A) 5
  • (B) $${\text{5}}\frac{1}{2}$$
  • (C) $${\text{5}}\frac{2}{3}$$
  • (D) $${\text{5}}\frac{1}{3}$$

88.

The value of expression cos245° + cos2135° + cos2225° + cos2315° is:

  • (A) 2
  • (B) $$\frac{1}{2}$$
  • (C) $$\frac{3}{2}$$
  • (D) 1

89.

Evaluate the following expression in terms of trigonometric ratios.
$$\frac{{{{\cot }^2}A\left( {\sec A - 1} \right)}}{{1 + \sin A}}$$

  • (A) $$\frac{{{{\sec }^2}A\left( {1 + \sin A} \right)}}{{1 - \sec A}}$$
  • (B) $$\frac{{{{\sec }^2}A\left( {1 - \sin A} \right)}}{{1 + \sec A}}$$
  • (C) $$\frac{{{{\cot }^2}A\left( {1 + \sin A} \right)}}{{1 - \sec A}}$$
  • (D) $$\frac{{{{\cot }^2}A\left( {1 - \sin A} \right)}}{{1 - \sec A}}$$

90.

If $$\sin \alpha + \cos \beta = 2;$$   $$\left( {{0^ \circ } \leqslant \beta \alpha \leqslant {{90}^ \circ }} \right){\text{,}}$$     then $${\text{sin}}\,{\left( {\frac{{2\alpha + \beta }}{3}} \right)^ \circ }$$   is?

  • (A) $${\text{sin }}\frac{\alpha }{2}$$
  • (B) $$\cos \frac{\alpha }{3}$$
  • (C) $${\text{sin }}\frac{\alpha }{3}$$
  • (D) $$\cos \frac{{2\alpha }}{3}$$