Practice MCQ Questions and Answer on Trigonometry
81.
If 2cos2ÃÂÃÂÃÂø + 3sinÃÂÃÂÃÂø = 3, where 0ÃÂÃÂÃÂð ÃÂÃÂÃÂø 90ÃÂÃÂÃÂð, then what is the value of sin22ÃÂÃÂÃÂø + cos2ÃÂÃÂÃÂø + tan22ÃÂÃÂÃÂø + cosec22ÃÂÃÂÃÂø?
- (A) $$\frac{{29}}{6}$$
- (B) $$\frac{{29}}{3}$$
- (C) $$\frac{{35}}{6}$$
- (D) $$\frac{{35}}{{12}}$$
82.
If 1 + sin2ÃÂÃÂÃÂø - 3sinÃÂÃÂÃÂøcosÃÂÃÂÃÂø = 0, then the value of cotÃÂÃÂÃÂø is:
- (A) 2
- (B) $$\frac{1}{3}$$
- (C) $$\frac{1}{2}$$
- (D) 0
83.
If tan2A - 6tanA + 9 = 0, 0ÃÂÃÂÃÂð A 90ÃÂÃÂÃÂð, What is the value of 6cotA + $$8\sqrt {10} $$ cosA?
- (A) $$10\sqrt {10} $$
- (B) 14
- (C) 10
- (D) $$8\sqrt {10} $$
84.
In ÃÂÃÂÃÂÃÂÃÂÃÂABC, ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂàB = 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð and AB : BC = 2 : 1, then value of (sinA + cotC) = ?
- (A) $$3 + \sqrt 5 $$
- (B) $$\frac{{2 + \sqrt 5 }}{{2\sqrt 5 }}$$
- (C) $$2 + \sqrt 5 $$
- (D) $$3\sqrt 5 $$
85.
The value of $$\frac{{\sec \theta \left( {1 - \sin \theta } \right)\left( {\sin \theta + \cos \theta } \right)\left( {\sec \theta + \tan \theta } \right)}}{{\sin \theta \left( {1 + \tan \theta } \right) + \cos \theta \left( {1 + \cot \theta } \right)}}$$ ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ ÃÂÃÂ is equal to:
- (A) 2cosθ
- (B) cosecθsecθ
- (C) 2sinθ
- (D) sinθcosθ
86.
$${\left( {\frac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3} - \cos \theta }}} \right)^2} + 1,$$ ÃÂÃÂÃÂàÃÂÃÂÃÂàÃÂÃÂÃÂÃÂÃÂÃÂÃÂø ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂà45ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð is equal to:
- (A) cosec2θ
- (B) sec2θ
- (C) cot2θ
- (D) 2tan2θ
87.
The value of coses260ÃÂÃÂÃÂð + sec260ÃÂÃÂÃÂð - cot260ÃÂÃÂÃÂð + tan230ÃÂÃÂÃÂð will be?
- (A) 5
- (B) $${\text{5}}\frac{1}{2}$$
- (C) $${\text{5}}\frac{2}{3}$$
- (D) $${\text{5}}\frac{1}{3}$$
88.
The value of expression cos245ÃÂÃÂÃÂð + cos2135ÃÂÃÂÃÂð + cos2225ÃÂÃÂÃÂð + cos2315ÃÂÃÂÃÂð is:
- (A) 2
- (B) $$\frac{1}{2}$$
- (C) $$\frac{3}{2}$$
- (D) 1
89.
Evaluate the following expression in terms of trigonometric ratios.
$$\frac{{{{\cot }^2}A\left( {\sec A - 1} \right)}}{{1 + \sin A}}$$
- (A) $$\frac{{{{\sec }^2}A\left( {1 + \sin A} \right)}}{{1 - \sec A}}$$
- (B) $$\frac{{{{\sec }^2}A\left( {1 - \sin A} \right)}}{{1 + \sec A}}$$
- (C) $$\frac{{{{\cot }^2}A\left( {1 + \sin A} \right)}}{{1 - \sec A}}$$
- (D) $$\frac{{{{\cot }^2}A\left( {1 - \sin A} \right)}}{{1 - \sec A}}$$
90.
If $$\sin \alpha + \cos \beta = 2;$$ ÃÂÃÂ $$\left( {{0^ \circ } \leqslant \beta \alpha \leqslant {{90}^ \circ }} \right){\text{,}}$$ ÃÂÃÂ ÃÂÃÂ then $${\text{sin}}\,{\left( {\frac{{2\alpha + \beta }}{3}} \right)^ \circ }$$ ÃÂÃÂ is?
- (A) $${\text{sin }}\frac{\alpha }{2}$$
- (B) $$\cos \frac{\alpha }{3}$$
- (C) $${\text{sin }}\frac{\alpha }{3}$$
- (D) $$\cos \frac{{2\alpha }}{3}$$