Practice MCQ Questions and Answer on Trigonometry

61.

What is the value of cos40cos140sin80+sin20?

  • (A) 23
  • (B) 23
  • (C) 13
  • (D) 3

62.

If tan15° = 2 - 3,  then the value of tan15° cot75° + tan75° cot15° is?

  • (A) 14
  • (B) 12
  • (C) 10
  • (D) 8

63.

If sinθ=p21p2+1,   then cosθ is equal to:

  • (A) 2p1+p2
  • (B) pp21
  • (C) p1+p2
  • (D) 2pp21

64.

If xsin260  - 32sec60 . tan230  + 45sin245 . tan260  = 0, then x is?

  • (A) 115
  • (B) -4
  • (C) 415
  • (D) -2

65.

Solve the following to find its value in terms of trigonometric ratios.
(sinA + cosA)(1 - sinAcosA)

  • (A) sin3A + cos3A
  • (B) sin2A - cos2A
  • (C) [cosA - sinA][sin2A + cos2A]
  • (D) sin3A - cos3A

66.

If cos53° = xy, then sec53° + cot37° is equal to:

  • (A) x+y2x2y
  • (B) x+y2x2x
  • (C) y+y2x2x
  • (D) y+y2x2y

67.

(1tanθ1cotθ)2+1=?

  • (A) cosec2θ
  • (B) sec2θ
  • (C) cos2θ
  • (D) sin2θ

68.

If sin21° = xy,  then sec21° - sin69° is equal to?

  • (A) x2yy2x2
  • (B) y2xy2x2
  • (C) x2yx2y2
  • (D) y2xx2y2

69.

1+cosθsin2θsinθ(1+cosθ)×sec2θ+cosec2θtanθ+cotθ,       0° θ 90°, is equal to:

  • (A) cosecθ
  • (B) cotθ
  • (C) tanθ
  • (D) secθ

70.

Which one of the following is true for 0° θ 90° ?

  • (A) cosθ ≤ cos2θ
  • (B) cosθ cos2θ
  • (C) cosθ > cos2θ
  • (D) cosθ ≥ cos2θ