Practice MCQ Questions and Answer on Trigonometry
41.
If 1 + cos2ÃÂÃÂÃÂø = 3sinÃÂÃÂÃÂø cosÃÂÃÂÃÂø, then the integral value of cotÃÂÃÂÃÂø is $$\left( {0 \theta \frac{\pi }{2}} \right) = \,?$$
- (A) 2
- (B) 1
- (C) 3
- (D) 0
42.
If ÃÂÃÂÃÂø is positive acute angle and 7cos2ÃÂÃÂÃÂø + 3sin2ÃÂÃÂÃÂø = 4, then value of ÃÂÃÂÃÂø is?
- (A) 60°
- (B) 30°
- (C) 45°
- (D) 90°
43.
If 7sinÃÂÃÂÃÂÃÂÃÂÃÂÃÂø + 3cosÃÂÃÂÃÂÃÂÃÂÃÂÃÂø = 4, (0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä ÃÂÃÂÃÂÃÂÃÂÃÂÃÂø ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂä 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð), then the value of ÃÂÃÂÃÂÃÂÃÂÃÂÃÂø is?22
- (A) $$\frac{\pi }{2}$$
- (B) $$\frac{\pi }{3}$$
- (C) $$\frac{\pi }{6}$$
- (D) $$\frac{\pi }{4}$$
44.
If $$\frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta - 3\cos \theta + 2}} = 1,\,\theta $$ ÃÂÃÂ ÃÂÃÂ lies in the first quadrant, then the value of $$\frac{{{{\tan }^2}\frac{\theta }{2} + {{\sin }^2}\frac{\theta }{2}}}{{\tan \theta + \sin \theta }}$$ ÃÂÃÂ ÃÂÃÂ is:
- (A) $$\frac{{2\sqrt 3 }}{{27}}$$
- (B) $$\frac{{7\sqrt 3 }}{{54}}$$
- (C) $$\frac{{2\sqrt 3 }}{9}$$
- (D) $$\frac{{5\sqrt 3 }}{{27}}$$
45.
The value of $$\frac{{{\text{sin 6}}{5^ \circ }}}{{\cos {{25}^ \circ }}}$$ ÃÂÃÂ is?
- (A) 0
- (B) 1
- (C) 2
- (D) No defined
46.
If tanÃÂÃÂÃÂÃÂÃÂÃÂÃÂñ = 1 + 2tanÃÂÃÂÃÂÃÂÃÂÃÂÃÂò (ÃÂÃÂÃÂÃÂÃÂÃÂÃÂñ, ÃÂÃÂÃÂÃÂÃÂÃÂÃÂò are positive acute angles), then ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂ2cosÃÂÃÂÃÂÃÂÃÂÃÂÃÂñ - cosÃÂÃÂÃÂÃÂÃÂÃÂÃÂò is equal to?22
- (A) 0
- (B) $$\sqrt 2 $$
- (C) 1
- (D) -1
47.
The expression $$\frac{{\left( {1 - 2{{\sin }^2}\theta {{\cos }^2}\theta } \right)\left( {\cot \theta + 1} \right)\cos \theta }}{{\left( {{{\sin }^4}\theta + {{\cos }^4}\theta } \right)\left( {1 + \tan \theta } \right){\text{cosec}}\,\theta }} - 1,$$ ÃÂàÃÂàÃÂà0ÃÂÃÂÃÂð ÃÂÃÂÃÂø 90ÃÂÃÂÃÂð, equals:
- (A) -sec2θ
- (B) cos2θ
- (C) -sin2θ
- (D) sec2θ
48.
What is the value of $$\frac{{{{\left[ {\tan \left( {{{90}^ \circ } - A} \right) + \cot \left( {{{90}^ \circ } - A} \right)} \right]}^2}}}{{\left[ {2{{\sec }^2}\left( {{{90}^ \circ } - 2A} \right)} \right]}}?$$
- (A) 0
- (B) 1
- (C) 2
- (D) -1
49.
If ÃÂÃÂÃÂñ + ÃÂÃÂÃÂò = 90ÃÂÃÂÃÂð and ÃÂÃÂÃÂñ : ÃÂÃÂÃÂò = 2 : 1, then the ratio of cosÃÂÃÂÃÂñ to cosÃÂÃÂÃÂò is?
- (A) 1 : $$\sqrt 3 $$
- (B) 1 : 3
- (C) 1 : $$\sqrt 2 $$
- (D) 1 : 2
50.
If cos4ÃÂÃÂÃÂñ - sin4ÃÂÃÂÃÂñ = $$\frac{5}{6}$$ then the value of 2cos2ÃÂÃÂÃÂñ - 1 = . . . . . . . .
- (A) $$\frac{6}{{11}}$$
- (B) $$\frac{5}{6}$$
- (C) $$\frac{6}{5}$$
- (D) $$\frac{{11}}{6}$$