31.
Maximum value of (2sinÃÂÃÂÃÂø + 3cosÃÂÃÂÃÂø) is?
Show Answer
Solution:
$$\eqalign{ & \left( {2\sin \theta + 3\cos \theta } \right) \cr & {\text{Maximum value of}} \cr & a\sin \theta + b\cos \theta \cr & = \sqrt {{a^2} + {b^2}} \cr & = \sqrt {{2^2} + {3^2}} \cr & = \sqrt {4 + 9} \cr & = \sqrt {13} \cr} $$
32.
If tan40ÃÂÃÂÃÂð = ÃÂÃÂÃÂñ, then find
Show Answer
Solution:
$$\eqalign{ & \frac{{\tan {{320}^ \circ } - \tan {{310}^ \circ }}}{{1 + \tan {{320}^ \circ }\tan {{310}^ \circ }}} \cr & = \frac{{\tan \left( {{{360}^ \circ } - {{40}^ \circ }} \right) - \tan \left( {{{270}^ \circ } + {{40}^ \circ }} \right)}}{{1 + \tan \left( {{{360}^ \circ } - {{40}^ \circ }} \right)\tan \left( {{{270}^ \circ } + {{40}^ \circ }} \right)}} \cr & = \frac{{ - \tan {{40}^ \circ } + \cot {{40}^ \circ }}}{{1 + \tan {{40}^ \circ } \times \cot {{40}^ \circ }}} \cr & = \frac{{\cot {{40}^ \circ } - \tan {{40}^ \circ }}}{{1 + 1}} \cr & = \frac{{\frac{1}{\alpha } - \alpha }}{2} \cr & = \frac{{1 - {\alpha ^2}}}{{2\alpha }} \cr} $$
33.
If sinÃÂÃÂÃÂÃÂÃÂÃÂÃÂø ÃÂÃÂÃÂÃÂÃÂàcosÃÂÃÂÃÂÃÂÃÂÃÂÃÂø = Then the value of sinÃÂÃÂÃÂÃÂÃÂÃÂÃÂø - cosÃÂÃÂÃÂÃÂÃÂÃÂÃÂø is where 0ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð ÃÂÃÂÃÂÃÂÃÂÃÂÃÂø 90ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð.
Show Answer
Solution:
$$\eqalign{ & \sin \theta \times \cos \theta = \frac{1}{2} \cr & {\text{Multiply by 2 both side}} \cr & 2\sin \theta \times \cos \theta = 1 \cr & \sin 2\theta = 1 \cr & \sin 2\theta = \sin {90^ \circ } \cr & 2\theta = {90^ \circ } \cr & \theta = {45^ \circ } \cr & {\text{So,}}\sin \theta - {\text{cos}}\theta \cr & = \sin {45^ \circ } - \cos {45^ \circ } \cr & = \frac{1}{{\sqrt 2 }} - \frac{1}{{\sqrt 2 }} \cr & = 0{\text{ }} \cr} $$
34.
The value of cos2 20ÃÂÃÂÃÂð + cos2 70ÃÂÃÂÃÂð is?
Show Answer
Solution:
$$\eqalign{ & {\text{co}}{{\text{s}}^2}{20^ \circ } + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = {\text{co}}{{\text{s}}^2}\left( {{{90}^ \circ } - {{70}^ \circ }} \right) + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = {\sin ^2}{70^ \circ } + {\text{co}}{{\text{s}}^2}{70^ \circ } \cr & = 1 \cr} $$
35.
If ÃÂÃÂ ÃÂÃÂ then k = ?
(A) cosecθ
(B) secθ
(C) cosθ
(D) sinθ
Show Answer
Solution:
$$\eqalign{ & \frac{{\tan \theta + \sin \theta }}{{\tan \theta - \sin \theta }} = \frac{{{\text{k}} + 1}}{{{\text{k}} - 1}} \cr & \frac{{\tan \theta }}{{\sin \theta }} = {\text{k}} \cr & {\text{k}} = \sec \theta \cr} $$
36.
If 7sin2 ÃÂÃÂÃÂø + 3cos2 ÃÂÃÂÃÂø = 4, then the value of secÃÂÃÂÃÂø + cosecÃÂÃÂÃÂø is?
(A)
(B)
(C)
(D) None of these
Show Answer
Solution:
$$\eqalign{ & {\text{7}}{\sin ^2}\theta + 3{\text{co}}{{\text{s}}^2}\theta = 4 \cr & {\text{7}}{\sin ^2}\theta + 3\left( {{\text{1}} - {\text{si}}{{\text{n}}^2}\theta } \right) = 4 \cr & {\text{7}}{\sin ^2}\theta + 3 - 3{\sin ^2}\theta = 4 \cr & 4{\sin ^2}\theta = 1 \cr & {\sin ^2}\theta = \frac{1}{4} \cr & {\text{sin }}\theta = \frac{1}{2} \cr & \sin \theta = \sin {30^ \circ } \cr & \theta = {30^ \circ } \cr & \sec \theta + \operatorname{cosec} \theta \cr & = \sec {30^ \circ } + \operatorname{cosec} {30^ \circ } \cr & = \frac{2}{{\sqrt 3 }} + 2 \cr} $$
37.
If ÃÂÃÂ ÃÂÃÂ then the value of ÃÂÃÂ ÃÂÃÂ is?
Show Answer
Solution:
$$\eqalign{ & \pi \sin \theta = 1\,.....(i) \cr & \pi \cos \theta = 1\,.....(ii) \cr & {\text{Divide eq}}{\text{. (i) from (ii)}} \cr & \frac{{\pi \sin \theta }}{{\pi \cos \theta }} = \frac{1}{1} \cr & \tan \theta = 1 \cr & \tan \theta = \tan {45^ \circ } \cr & \theta = {45^ \circ } \cr & \therefore \sqrt 3 \tan \left( {\frac{2}{3}\theta } \right) + 1 \cr & = \sqrt 3 \tan \left( {\frac{2}{3} \times {{45}^ \circ }} \right) + 1 \cr & = \sqrt 3 {\text{ tan}}{30^ \circ } + 1 \cr & = \sqrt 3 \times \frac{1}{{\sqrt 3 }} + 1 \cr & = 2 \cr} $$
38.
If ÃÂÃÂ then the value of ÃÂÃÂ is?
Show Answer
Solution:
$$\eqalign{ & {\text{tan}}\alpha = 2\left( {{\text{given}}} \right) \cr & \therefore \frac{{{\text{cose}}{{\text{c}}^2}\alpha - {\text{se}}{{\text{c}}^2}\alpha }}{{{\text{cose}}{{\text{c}}^2}\alpha + se{c^2}\alpha }} \cr} $$ (Divide by coses2α both in N and D) $$\eqalign{ & = \frac{{1 - {\text{ta}}{{\text{n}}^2}\alpha }}{{1 + {\text{ta}}{{\text{n}}^2}\alpha }} \cr & = \frac{{1 - {{\left( 2 \right)}^2}}}{{1 + {{\left( 2 \right)}^2}}} \cr & = - \frac{3}{5} \cr} $$
39.
ÃÂÃÂÃÂàÃÂÃÂÃÂàÃÂÃÂÃÂÃÂÃÂÃÂÃÂø ÃÂÃÂÃÂâÃÂÃÂÃÂÃÂÃÂà45ÃÂÃÂÃÂÃÂÃÂÃÂÃÂð is equal to:
(A) cosec2θ
(B) sec2θ
(C) cot2θ
(D) 2tan2θ
Show Answer
Solution:
$$\eqalign{ & {\left( {\frac{{\sin \theta - 2{{\sin }^3}\theta }}{{2{{\cos }^3} - \cos \theta }}} \right)^2} + 1 \cr & = \frac{{{{\sin }^2}\theta }}{{{{\cos }^2}\theta }}{\left( {\frac{{{{\cos }^2}\theta }}{{{{\cos }^2}\theta }}} \right)^2} + 1 \cr & = {\tan ^2}\theta + 1 \cr & = {\sec ^2}\theta \cr} $$
40.
If secÃÂÃÂÃÂø + tanÃÂÃÂÃÂø = p, (p > 1) then
Show Answer
Solution:
$$\eqalign{ & \sec \theta + \tan \theta = p \cr & \frac{{\sec \theta + \tan \theta }}{{\sec \theta - \tan \theta }} = \frac{p}{{\frac{1}{p}}} \cr & \frac{{\sec \theta + \tan \theta }}{{\sec \theta - \tan \theta }} = \frac{{{p^2}}}{1} \cr & {\text{Apply componendo and dividendo}} \cr & \frac{{\sec \theta }}{{\tan \theta }} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr & \frac{{\sec \theta .\cos \theta }}{{\tan \theta }} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr & \frac{{{\text{cosec }}\theta }}{1} = \frac{{{p^2} + 1}}{{{p^2} - 1}} \cr & {\text{Apply again componendo and dividendo}} \cr & \frac{{{\text{cosec }}\theta + 1}}{{{\text{cosec }}\theta - 1}} = \frac{{{p^2}}}{1} \cr} $$